首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
选矿优化控制 2024-09-30 20:13:25

关于金属材料的论文(金属回收的实例分析)

一、关于澳洲金矿选矿厂实战分析

金田公司于2001年12月从WMC资源有限公司购买了圣伊维斯矿山。金属在购买后,材料他们立刻开始着手提高现有选矿厂的文金处理能力和减少单位操作成本工作。在详细分析选矿方案之后,属回收的实例放弃了原有的分析选矿厂,推荐建设一座新的关于具有更大处理能力的选矿厂,因为一个新的金属选矿厂可以具有更经济的选择方案。这个选矿厂建在离主要的材料未来矿石资源地很近的地方。选矿厂靠近未来矿石资源地对运输成本的文金降低很有好处。设计一个新选矿厂具有更多的属回收的实例灵活性,以便将来更容易扩建它。分析在12个月内建成了勒夫诺伊选矿厂,关于并完成了主要的金属试生产工作。在投产后的材料很短时间内,选矿厂就达到设计的生产能力和设计的金回收率。在关键的设计目标达到后,就对选矿厂冶金过程进行优化研究。执行先进的控制策略可以大幅度提高选矿厂指标。

01

背景

圣伊维斯黄金采矿公司有勒夫诺伊金选矿厂和一个金堆浸设施。勒夫诺伊金选矿厂年处理4.8Mt高品位含金矿石,每年可产出48万盎司黄金。堆浸设施年处理2.5Mt低品位含金矿石,年产45万盎司黄金。圣伊维斯金矿山勒夫诺伊金选矿厂是澳大利亚第三大黄金生产矿山。

02

位置和矿物学

勒夫诺伊选矿厂位于勒夫诺伊湖旁,大约位于澳大利亚东金矿田Kambalda镇东南部20km处。在圣伊维斯矿床中,金大都以粗粒到中等粒度的矿物或自然金沿着矿物相交处产出。在大多数矿床中见到金合金(如金银合金)和含金矿物(如碲金矿和黑铋金矿),虽然数量比较少。在一些矿床中,大约有10%~20%金以细粒包体存在于硫化矿物(例如黄铁矿和磁黄铁矿)中。粗磨很容易使金与脉石矿物单体解离出来。应用重选法、硫化矿精矿细磨和氰化工艺可获得比较高的金回收率。

03

选矿厂描述

勒夫诺伊选矿厂接受几个露天采场和地下矿井采出的原矿。露天采场矿石通过140t的CAT785型自卸矿车运送到破碎机给矿垫上。地下矿井采出的矿石应用安装在侧向翻笼内的105和120t牵引车运送到破碎机原矿垫上。过量的矿石单独堆在原矿垫上,稍后再用前端式装载机给到破碎机中。直接翻卸矿石是往破碎机给料的首选方法。位于粗粒矿石堆场附近的细粒软矿石堆垫常用来贮存黏性矿石,例如湖泊沉积物、流动性好的氧化矿、磨矿机大矿块和选矿厂溢出物料。

来自软矿石堆场的黏性物料通过软矿石仓和一台与粗碎机和粗矿石堆场旁路的板式给给机给到磨矿机中。这样可以通过缩短由于黏性矿石阻塞而引起的停工时间,来确保粗碎机的最大处理能力。当粗粒矿石堆场中的矿石水平较低的时候,软矿石仓也可以当作紧急给料机使用。粗碎机配备有碎石机,碎石机用来破碎和清除粗碎机破碎腔中形成的岩石“搭桥”。破碎后的矿石通过短皮带运输机和较长的堆场给料皮带运输机运到粗粒矿石堆场上。

在这两台运输机转移点处,安装了聚乙烯导管拣选器和一块磁铁,聚乙烯导管拣选器用来除去长的聚乙烯导管,磁铁用来除去残留的废金属。磁铁能够除去金属丝、长的螺栓和矿井中所用的钻杆片。粗粒矿石堆场用金属护板掩盖,以便减少由粗矿石堆场散发出的灰尘,为职工提供一个无灰尘污染的环境,和保护安装在半自磨机电动机上的敏感的电子设备。

粗粒矿石堆场的总容量大约为77万t。每台处理能力为800t/d的3台板式给矿机将粗粒矿石给入半自磨机中。每台给矿机安装了过程摄相机,用来监控运输斜道上的阻塞情况。磨矿机给料皮带运输机安装了Visio Rock图像分析系统,来监控给入半自磨机中的给料尺寸。半自磨机是一段大径长比半自磨机,它由一台13MW可变速无齿轮电动机驱动。

半自磨机排出的矿浆流经一台8.6m×3.7m的振动筛,以对矿浆初步分级和除去过大矿石块。大的矿块在紧急情况下被卸到地面上,或者通过一台砾石破碎机破碎后返回到半自磨机里。大矿块也可部分或全部旁路通过砾石破碎机。大矿块皮带运输机安装了磁铁和金属探测器,以保护砾石破碎机不被金属碎块破坏。自磨机排出的筛下产品给到一组10台直径为20英寸的Krebsg Max型水力旋流器中。约30%的旋流器沉砂给到两个独立且平行的重选回路中。所有旋流器沉砂都返回到半自磨机给矿中。

重选回路由2个平行的SB2500Falcon分选机和2个平行的IPJ2400在线压力跳汰机组成,以回收硫化矿物。VTM-500型细磨矿机可使JIG跳汰机精矿中的金与硫化矿物解离。用ILR3000BA型强化浸出反应器从重选精矿中强化氰化浸出金。重选回路中的全部尾矿也给到半自磨机给料箱中。选矿厂碎磨回路详情如图1所示。

04

选择一段半自磨回路的决定

预可行性研究确定了扩建现有选矿厂和建立新选矿厂的几个可能的工艺流程方案。每个工艺流程选择的基本投资和运行费用精度在±30%左右。最后决定,一段半自磨方案优于其他所选择的方案,尽管它在工业上存在一些缺点。在建立勒夫诺伊金选矿厂之前,圣伊维斯黄金采矿公司已经经营一个处理能力为3.1Mt/a的选矿厂,但这个选矿厂现在已经停产了。按SABC模式(半自磨-球磨-砾石破碎流程)运转的老选矿厂的第二段破碎给矿的平均粒度为F80=40mm。在老选矿厂中对粗粒矿石进行了两天试验,并收集有关数据,以作为驱动JKSimMet磨矿回路模型的基础。这个试验成果已在2001年自磨机会议上提出了。应用老选矿厂磨矿回路的JKSimMet模型作为评价新选矿厂设计所选工艺流程的基础。被评价的整个工艺流程的选择方案有:

1)安装第二个平行磨矿回路,以改造老选矿厂;

2)用一台较大的一段半自磨机代替SABC磨矿回路来改造老选矿厂;

3)建造一个包括有三段破碎和常规球磨回路的新选矿厂;

4)建造一个包括有一个处理能力为4.5Mt/a的SABC回路的新选矿厂;

5)建造一个包括有砾石破碎的直径为36英尺高径长比的一段半自磨机的选矿厂。

方案1和方案2的变化是用两段或三段破碎将磨矿机的给矿破碎到较细的粒度。除了方案3外,一些方案还包括砾石破碎和/或预先筛分(在半自磨之前)。在做最终决定时,应用了以下的标准(其顺序不存在主次关系)。

1)每个所选方案增加的费用(使用NPV(净现值)和IRR(投资内部回收期));

2)技术方面的风险性;

3)与将来矿石资源地是否靠近;

4)可运行性和可维护性;

5)将来扩大的潜在性;

6)职员对每一个加工流程方案的熟悉程度和经验的积累的多少。

根据上述标准评价,方案1和方案2比其它方案在大多数情况下没有多大的好处。老选矿厂与未来矿床之间的距离对方案的选择起了负面影响。尽管方案5满足了其它所选择的标准,但由于它具有一些明显的缺点和自身的技术风险性,所以最初就没有将它列入最终选择表格中。在方案选择研究中,对方案3和方案4进行了较详细的分析。这两个方案的研究结果是相近的,仅从经济(NPV/IRR)方面考虑,选择了方案4,而抛弃方案3。在考虑所有选择标准和它们的所占的权重,对方案4进行了详细的可行性研究。精度±10%的详细可行性研究结果表明,方案4不能将操作费用降到预期的值。方案5具有一定的技术风险性,最初一直拒绝选择使用,但后来对它进行评价。尽管方案5自身存在技术风险性,但由于以下原因,最终还是选择了方案5:

1)由于不需要为制造新磨矿机而拖延时间,使得项目交付时间表提前很多。圣伊维斯黄金采矿公司以前曾定购了一台新的直径36英尺的半自磨机,这台半自磨机是由原来的所有者WMC资源有限公司于1997年初为扩建选矿厂设计和定购的;

2)较低的基本投资;

3)在老选矿厂中用直径24英尺的磨矿机对粗粒矿石进行了试验,因此应用直径36英尺的半自磨机的技术风险实际上降低不少;

4)一台半自磨机仅意味着操作和维护一台设备;

5)对选矿厂将来的扩建具有很多优势。

05

设计考虑

为了设计,需要对未来的所有矿石的传统邦德球磨矿机和棒磨矿机功指数(BWI和RWI)以及JK半自磨机破碎参数进行测定。JK半自磨机破碎参数由改进的落体重量试验(SMCC方法)测定。用JKSimMet模型对磨矿回路进行模拟,以对不同的情况进行分析和预测。半自磨机破碎参数如表1所示。

06

磨矿机的关键风险及对其操作的影响

【过程的不稳定性】所有的大矿块(破碎的或未破碎的)、旋流器沉砂、重选回路尾矿、磨矿和重选区域所有溢出物、清洗水以及破碎和泵池的清理物均进入半自磨机给矿中。由于矿浆泵的开启和关闭,以及一个或多个循环负荷的干扰,会引起过程不稳定。给矿粒度和硬度的变化也会使磨矿过程不稳定。毫无疑问,给矿粒度(F80)、矿石硬度、给矿速率和钢球添加量对开路半自磨机的操作性能的影响也得到了证实。

因此,勒夫诺伊选矿厂的一段半自磨回路的这些参数发生大的波动也是合情合理的。在设计阶段就注意到这些参数可能有很大的影响。一个固有的不稳定回路(磨矿处理量和磨矿粒度)会对下游过程起很大的负面影响,从而影响选矿厂的回收率和现金流。这种波动也会对关键加工设备(如旋流器给矿泵、皮带运输机、砾石破碎机、主驱动系统和隔粗清洗筛)的操作有负面影响。反过来,这将会增加这个设备的维修成本。在破碎机前对给矿进行配矿是不现实的。在破碎回路和粗粒矿堆场中矿石会发生很小程度的混匀。通过粗碎给矿机也可能会影响矿石的混匀程度,特别是对给矿粒度。

但是,所有这些参数的影响不能替代在原矿衬垫上较好的混合。矿石从采矿场直接运到选矿厂堆存而不进行配矿,一般是根据运输物料需要花去更多费用。矿石的再运输费用很容易量化。因此,这些费用是削减成本中最容易被选定的目标。那些不容易量化的费用是那些未混匀的矿石在选矿厂下游处理中所花去的费用。

这需要长时期的辛勤工作,以收集所有相关的资料,找出主要的变量,以证明未混合矿石对分选的影响。圣伊维斯矿石的硬度(以JKSAG参数A*b表示)的分布情况如图2所示。从该图可以看出,矿石的硬度在极软变到极硬的很大范围内变化,这与给入选矿厂的矿石性质有关。矿石硬度(粒度)的瞬时变化对设备操作员要满足碎磨产品要求提出了挑战。

在选矿厂设计中对配矿未提出要求。但是,需要采用以下措施使矿石类型的变化对磨矿的负面影响降到最小:

1)根据给矿硬度和粒度的变化来调节钢球的添加量,以减少矿石性质变化的负面影响;

2)改变磨矿机的操作条件,如根据磨矿机的总负荷来调节磨矿机的转速和钢球与矿石的重量比;

3)应用砾石破碎;

4)对过程进行控制:当所有的再循环载荷返回到磨矿机的时候,给料性质的波动将对磨矿机的负荷、大矿块含量、循环负荷、旋流器溢流密度、最终产品粒度和分级效率产生影响。因此,使用一个好的控制策略将给料性质变化的负面影响降到最小是很有必要的。

【矿浆积水化风险】矿浆积水化(Pooling)也是一个关键风险。矿浆积水化对磨矿机的负荷、磨矿机的驱动功率和磨矿粒度的稳定性存在很大的有害影响。如果操作条件不正确和矿浆提升器设计不正确的话,磨矿机就会在矿浆积水化边缘条件下运行。设计的焦点放在两种不同类型的矿浆提升器上:

1)径向矿浆提升器;

2)螺旋状矿浆提升器。一些大规格的开路半自磨机安装了螺旋状矿浆提升器,据报道说,它有令人满意的效果。

从设计上来看,这两种矿浆提升器都有各自的缺点。螺旋状矿浆提升器需要单一方向的衬板/提升器。尽管它们具有较好的排矿特性,但由于磨矿机单方向旋转,衬板的消耗量更大。螺旋状矿浆提升器不允许磨矿机在受载情况下两个方向运行。这是未来工程学和安全保障所关心的地方。假若有足够的空间(厚度方向),可以安装径向矿浆提升器,径向矿浆提升器可很好地从磨矿机中排出矿浆。由于磨矿机可以两个方向模式运行,所以,它们可延长衬板/矿浆提升器的使用年限。

【缺乏一段半自磨机的操作技术专家】为了克服这个风险,要对选矿厂职员广泛地进行技术培训。

【勒夫诺伊选矿厂没有安装浸出浓密机】依据操作条件不同,磨矿粒度与矿浆密度通常呈相反的关系。为了使这两个参数都保持在所要求的水平上,需要借助过程控制系统来熟练地操作磨矿回路。磨矿粒度过粗,会降低金属回收率,而矿浆浓度过稀,会缩短矿浆在浸出槽中的停留时间,从而降低金的浸出率。应用一个好的过程控制策略,可以消除这种风险。

07

投产试车

磨矿机湿式试运转先从全自磨模式开始。钢球添加量从0%分三段增加,即从4.2%,到6.2%,最后到8.0%(表2)。随着钢球添加量的增加,磨矿机生产能力增加。在钢球最大添加量为8.0%时,磨矿机生产能力可以达到546t/h,这个生产能力仅仅比551t/h的设计生产能力低一点。

如表2中所示,此时排料格子板没有发生变化。随着钢球添加量的增大,大矿块排出量占新给矿的百分比逐渐降低。在全自磨模式下,大块矿的比例是很很高的,经常大于100%。当装球量达到8.0%时,仍有一半的给矿作为大块矿石返回到磨矿机中。大矿块对给矿的百分比在大多数情况下为47%,在8.0%的装球量情况下,大块矿石的量为269t/h。这仍然高于设计所规定的目标,但长期这样运行,对所安装的砾石破碎机处理能力不一定受得了。在8.0%的装球量下,大块矿的量一般以60%偏移量波动。这反过来影响了大矿块的运输能力,使大矿块散落在选矿厂中。当大矿块排出量超过砾石破碎机处理能力时,它们经常要旁流于砾石破碎机。磨矿机的转速不能高于9.3r/min,这样又增大了大矿块的排出量。太高的大矿块排出量会堵塞半自磨机排矿筛,或损坏筛面。这也会引起大量的过大矿块旁流到旋流器给矿斗中,堵塞旋流器给矿管和矿浆泵,从而导致长期的停车。

因此,磨矿机不能在10.4r/min(80%的临界速度)全速下工作,除非大矿块量易于控制。较高的装球荷负可较容易地控制大矿块的排出量,但其真实的原因是决定于排矿端开孔区域面积,特别是在整个开孔区域中砾石孔所占的比例。因此将总的开孔区域和砾石孔所占比例分别降低到7.4%和20%。在这些水准上,大矿块的排出率减少到28%,使磨矿机的生产能力增加到600t/h以上。

08

矿浆提升器

经仔细考虑后,安装了深度为430mm的径向矿浆提升器。从多次对磨矿机检查来看,矿浆积水化一直不算一个会降低磨矿机处理能力的问题。径向矿浆提升器能很好地将矿浆从磨矿机中排出来。小心的突然停车对磨矿机中矿浆积水化进行了测量。结果表明,磨矿机大多数情况下在矿浆积水化以上或以下水平工作。实际上,突然停止一台负荷和其中矿浆水平没有太大波动的一段闭路半自磨机是很困难的。不过所做的观察结果对磨矿机中所发生的矿浆积水化有了一个清晰的了解。磨矿机矿浆积水化到目前为止还没有对旋流器循环负荷产生严重的问题。在试验的所有条件下,旋流器的循环负荷没有超过250%。

09

磨矿机性能

从磨矿机试车后一直到2006年4月第一次完全更换衬板时期,磨矿机的处理能力如图3所示。第一个时期描述了由于试车,特别是调试磨矿机排矿端,磨矿机处理能力未能达到设计要求。一旦砾石排矿口和开孔区域问题解决了,磨矿机的处理能力就达到设计生产能力。一直到更换全部衬板时,磨矿机处理能力都能够保持在设计生产能力之上。曲线第三段代表磨矿机生产能力下降期,这主要是由于破碎机衬板严重磨损和矿石硬度增大,较粗的矿石进入磨矿机中引起的。

10

磨矿机衬板

除了给矿端中部衬板和外部衬板外,其它所有衬板均表现的很好。在处理2.1Mt矿石后不得不更换给矿端衬板。通过增加提升器高度和加大相对给矿端提升器的角度,来改变提升器的外形。在更换全部衬板时,更换第二批给矿端衬板。在处理完5.6Mt矿石后(15个月的运转期),更换筒体部位衬板、排矿端衬板和格子板。在将来更换内部衬板时同时对给矿端衬板和提升器的外形再次进行修改。衬板具有较长的使用寿命有两个主要原因,即磨矿机在较小的装球量和矿与钢球负荷比较低的条件下运转。磨矿机通常在8%的装球率和28%的总负荷下运转。

11

半自磨机排矿筛

半自磨机排矿筛由Shenck公司供应。筛分机上的前三排是冲击面板,其余的是带孔的面板。带孔面板是易于自清理类型的。用于运输的冲击面板和前四排带孔的面板不能幸免严重的冲击和磨蚀操作条件,因此很快损坏。这样使得大量的大矿块旁路到排料斗中,并将其填满,堵塞旋流器给矿泵和给矿管。过量的大矿块的产生导致筛分机堵塞。对冲击面板和带孔面板改进后,大大延长了面板磨损寿命,减少了无计划的停工的时间,这是值得关注的改进。

12

给矿粒度的影响

软的粗粒给矿对磨矿机处理能力的影响比硬的粗粒给矿的影响要小。除去对磨矿机处理能力影响外,它还有其它一些影响。大而黏的矿块会在运矿槽中形成搭桥,堵塞运矿槽,使磨矿车间停产。实践表明,破碎细矿石,特别是破碎硬的细矿石是很重要的。给矿粒度对磨矿机生产能力的影响如图4所示。在上述图所描述的整个阶段内,砾石破碎机均运转。在此期间,矿石类型没有什么变化。因此磨矿机生产能力的影响完全是由给矿粒度变化引起的。在这个阶段中,给矿的平均粒度(F80)为131mm。细粒给矿粒度F80为103mm毫米。给矿粒度从131mm变化到103mm,使得磨矿机平均生产能力从533t/h提高到599t/h。

1-给矿量;2-给矿粒度(F80)

13

砾石破碎的影响

砾石破碎对磨矿机生产能力的影响实例如图5所示。砾石破碎机不工作时,磨矿机不能维持高的生产能力。钢球添加率已经最大化(大约为11%),以此来中和较硬矿石的影响。砾石破碎机不工作期间的特点是,返回到磨矿机的大矿块量波动大。显然,在砾石破碎机工作的情况下,磨矿机工作更稳定。在该图所显示的整个阶段,磨矿机都是自动控制的。将减小磨矿机重量自动控制响应定为控制策略,以增大给矿速率。磨矿机转速已经达到了所允许的最大水平,所以已经没有空间再增加转速了。

在砾石破碎机开启的情况下,返回磨矿机中的大矿块的比例开始减少了。这就产生了通过减小大矿块产生率和磨矿机负荷来增大磨矿机的生产能力。在砾石破碎机不工作的情况下,磨矿机的平均生产能力为482r/h,平均大矿块率为32%,并且这个百分数波动很大。在砾石破碎机启动以后,磨矿机的平均生产率达到584t/h,平均大矿块率降低到27%。

1-给矿量;2-F80

14

过程控制

磨矿机最初试车的控制策略是最基本的策略。它没有考虑到边界、过程变量相互作用及其对过程的影响。磨矿机的操作要求控制室里的操作员精细的监管。从控制点来看,效率是不高的。磨矿回路的不同部分彼此之间的控制通讯不畅通。给矿机控制、砾石破碎机控制、分级控制和半自磨机控制都是独立的,且没有考虑到相互之间的作用。过程输出变量的相容性和稳定性都不能很容易达到。

这导致磨矿机负荷、生产能力、磨矿粒度和旋流器溢流密度波动很大,因而,对下游加工过程起负面影响。在试车成功后,就需要用更高级的控制策略(MantaControls立方控制技术)来代替磨矿机的初始控制策略。新的控制策略可以大大减少操作员对磨矿机回路大强度的监管,允许操作员把精力集中到选矿厂其它更重要的任务上。磨矿回路的控制目标如下:

1)磨矿粒度(P80):最大磨矿粒度125μm;

2)旋流器溢流密度:45%~50%;

3)在旋流器溢流密度和磨矿粒度达到要求时,磨矿机生产能力最大化。由于下游过程的限制,磨矿机的最大生产能力也需要限制。

另外,下列的控制目标由磨矿区域的冶金学家设定和管理,因为立方控制没有对它们进行设定和管理:

1)不同类型的岩石与钢球重量比的优化和管理;

2)优化磨矿粒度。这意味着破碎粗粒软矿石和/或将部分或全部软矿石旁流于砾石破碎机。

3)在保证关键分级目标(P80和旋流器溢流密度)的前提下提高分级效率。

所有的关键操作设定值目前都是由冶金学家确定的。过程控制的下一步是执行一个更先进的控制策略来不断地优化这些设定值。

在执行立方控制策略后,旋流器溢流性质改进了。隔粗筛上矿浆波动和溢出现象消除了。下游过程(浸出和吸附)运行得很好,金的总回收率得到提高。

目前,用旋流器压力和给矿密度作为旋流器的变量,用来控制旋流器溢流密度和磨矿粒度(P80)。为了更好的控制磨矿粒度,需要对旋流器压力和给矿密度正确设定,并且要在这个设定值左右精确控制。根据操作数据,建立了旋流器溢流密度与磨矿粒度(P80)之间的相反的相关性(图7)。利用这种关系和控制旋流器压力和给矿密度,就能够将磨矿粒度控制在目标范围内。因为只要P80处在目标范围内,金的回收率就会变化不大,所以,此时就没有必要对磨矿粒度进行精确控制。旋流器压力和给矿密度的立方控制影响如图8所示。新的控制方式大幅度改进了对旋流器压力和给矿密度的控制。反过来又提高了旋流器溢流的密度。

15

结论

勒夫诺伊公司一段半自磨机试验投产很成功。所有的设计目标在试车后的短时间内就得以实现,目前磨矿机运转良好。磨矿机生产能力超过设计能力。在操作条件下磨矿粒度一直变化,但总是在目标范围之内。勒夫诺伊公司磨矿机的操作情况如图9所示。正如从该图所看到的,它比世界上其它的开路和闭路一段半磨矿机的指标要好。

在勒夫诺伊选矿厂,已经根据直径24英尺的半自磨机操作数据,按比例放大为直径为36英尺的半自磨机,而不需要进行繁杂的扩大试验。输入未来矿石的破碎参数和应用先前对磨矿回路所建立起来的JKSimMet模型,就可以方便地对磨矿回路进行设计和广泛的分析。在详细设计阶段,要是能够尽早识别磨矿回路的潜在风险,那么就可关注这些风险。

需要研究制定新的策略,以便克服这些潜在的风险。矿浆积水化、磨矿回路的不稳定性、技术和操作专家的缺少、没有浸出给矿浓密机和没有砾石破碎机都是风险。假若设计的径向矿浆提升器有足够的容量,便能有效地消除矿浆积水化带来的负面影响。

在分级回路之后如果没有浸出给矿浓密机,由于旋流器沉砂返回到磨矿机和分级回路中,因此磨矿机回路操作指标(密度和磨矿粒度)会变坏。试车开始时认识到磨矿机的工作曲线是很陡的。这表明,磨矿机试车阶段执行的策略是不适当的。因此需要制定一个更高级的过程控制策略。

选矿厂所有工作人员(冶金学家、操作和生产人员和电器维修人员)与专家一起来执行这个过程控制策略。这对过程是有很大好处的。成功优化的关键不仅要有各个方面的技术人员,而且还需要行政人员对此接受和承认。这样可确保每个人都能对过程优化做出贡献,并且一开始对此就有信心。

很多过程控制系统不是在过程现场设计的。控制系统设计好后作为黑箱系统来执行。操作员和选矿厂技术人员(冶金方面、电器和仪表方面人员)或许不能很好了解它们是怎么工作的。当系统开始频繁的出问题的时候,他们不能及时维护来解决这些问题。人员积极性的受挫使这些系统更容易失效。

执行一个好的控制策略,就会消除过程变量的波动。通过执行专家控制系统(已有的或立方控制系统上自带的),过程带来的利润可能更多。选矿厂的冶金过程的优化是很重要的,因为过程控制不仅产生所要求的结果。将来完成以下方面的工作会给过程带来更大的利润。

1)对矿山到选矿厂进行优化,其中包括爆破破碎和执行原矿配矿策略;

2)执行专家控制系统,连续对过程设定值进行优化;

3)使用新型在线矿浆密度仪对旋流器溢流密度进行控制。

位于澳大利亚卡姆巴尔达的圣伊维斯金矿山勒夫诺伊金选矿厂一段半自磨回路的投产与优化

——Y·阿塔索伊等

~~~~~~~~~~~~~~~~~~~

——原文发表在微信公众号《四方谈》(微信ID:WorldMining,《四方谈》原名《矿业澳洲》)

——鸣谢《澳玉四方》(Wechat ID:JewelryAtlas),有特别好的澳玉原石。

——鸣谢天然澳玉淘宝店《异珍阁澳玉四方》。

——鸣谢健康捍卫者《健康橡树屋》(Wechat ID:Oakhome)。

二、生活垃圾减量化的实例

城市生活垃圾减量化调查分析

摘要:城市生活垃圾所造成的污染已是一个十分突出的环境问题。利用社区网络开展卫生保洁、垃圾分检、废品回收,将生活垃圾减量化、资源化、产业化作为环境管理、城市管理的新模式。作者通过对一个居民小区和一个学院的试点调查,为这种模式的可行性提供了支持。

关键词:生活垃圾;减量化;环境管理;城市管理

城市生活垃圾作为一个严峻的环境问题,已摆在城市管理者的面前,全国668座大中城市2000年生活垃圾清运量粗略统计已超过1.5亿t,由于受资金及技术等因素的制约,绝大部分的生活垃圾没有得到及时有效的处理,许多城市已陷入垃圾的包围之中,成为城市管理者们十分头疼的问题。笔者认为,生活垃圾的处理也应坚持可持续发展的原则,实行最大限度地实现减量化,进而实行资源化、产业化。以下对生活垃圾减量化的可行性、社会效益及具体操作等问题进行探讨。

1减量化的可行性

当前我国最常见的生活垃圾处理方法是垃圾卫生填埋法,这些生活垃圾大多没有经过分类处理,里面掺杂着一些有毒害性的物质如废旧电池、废旧电器等(此类物质属于危险废物,国家明文规定严禁用填埋法处理),也有许多可回收利用的物质如废纸、金属、玻璃等,这些垃圾不经处理,直接填埋,既会造成严重的污染又会造成部分可利用资源的浪费,同时还会增大填埋场的处理量,缩短填埋场的使用寿命,造成不必要的经济损失。

在目前生活用能源仍以燃煤为主的能源结构未调整以前,中小城市的生活垃圾可以首先进行减量化后再进行其他处理,为此笔者进行了一次实地调查,调查的对象是长沙市的一所寄宿制学校和某居民区,学校占地约151 800m2,有学生1 300人,教职工及家属等400人;居民区占地约20 000m2,有住户112户,居住人口约400人。

表1是笔者在某学校和某居民区进行了为期l周(7天)的实地调查后得出的生活垃圾成分及含量;表2是长沙市和郴州市城市生活垃圾的成分及含量;表3是北京市事业区和平房区(1995年)生活垃圾成分及含量。

地点废纸金属塑料玻璃腐殖质灰份电池皮革织物

学校/% 2.89

0.42

7.84

0.64 43.31

43.49 0.06 1.35

居民区/% 29.85

4.01 17.54 5.09

31.81

5.78

02(32支) 1.75

4.15

位于长沙市的某居民小区,全封闭物业管理,无其他拾荒者进入小区,无烧煤户,属中等以上的生活水平。调查时,由物业管理公司协助,每天安排3名保洁员将各楼道口垃圾桶中的垃圾就地按纸类、金属玻璃、塑料、腐质类、电池、皮革及织物、渣土分别进行过磅、填表。学校区内绿树丛荫,每天产生大量的落叶和拔出的杂草都归类于腐殖质类,学校锅炉供给学生食堂蒸饭的蒸气和学生的开水、热水,锅炉产生的炉渣没有计算在内,若将锅炉产生的炉渣计入其中,则各成分的统计数据将变为:

地点废纸金属塑料玻璃腐殖质灰份电池皮革织物

学校/% 1.76

0.26 4.77 0.39 19.79

72.18 0.036 0.82

居民区/% 29.85 4.01 17.54

5.09 31.81 5.78 02(32支) 1.75

4.15

表2长沙市和郴州市生活垃圾的成分及含量

--------------------------------------------------------------------------------

地域动物

植物

炉灰渣石纸类塑料

玻璃金属布竹木

--------------------------------------------------------------------------------

长沙(1995)

0.22~1.30

5.67~

20.37 51.55~69.94

18.56~20.57 0.50~1.78 0.32~0.79

0.44~0.14

0.15~0.45 0.28~0.97 0.14~0.88

郴州(2001) 9.7 8.9 55 8.5 2.8 4.5 1.2 1.2 6.4

1.8

--------------------------------------------------------------------------------

表3北京市事业区和平房区生活垃圾成分及含量(1995年)

--------------------------------------------------------------------------------

地点灰土

食品纸类砖瓦塑料

草木玻璃织物

金属

--------------------------------------------------------------------------------

事业区 4.45

29.34

12.78

3.27

11.11 22.91 11.20

3.19

1.75

平房区 22.40 42.79

6.52

2.33

8.26 11.49

3.67 2.16 0.38

--------------------------------------------------------------------------------

从生活垃圾分类调查的情况来看,各组份含量特点如下:各种可利用的废纸、金属、塑料(含饮料瓶等)、皮革等的含量是卫生保洁工已经粗选一次后剩余的,但总的来说与长沙、郴州等地区的生活垃圾统计数据相似。如将现在的生活垃圾中可利用的物质再进一步分检、回收,则将直接减少垃圾重量的25.74%,将腐殖质(主要成分为:树叶、杂草、蔬菜叶、水果皮、废弃食品类等)分类收集集中处理,不但可变成很好的肥料,而且生活垃圾重量将减少50%左右,由此看来,对生活垃圾减量化处理是可行的。

当然垃圾减量化的途径还有很多,比如从垃圾源头减少垃圾的产生量,实行净菜进城,把不能食用的菜根、菜叶和牲畜屠宰物留在城外农村,作农肥利用,净菜进入普通家庭,腐殖质也将减少。而纸类等物质的含量将会提高,从而生活垃圾中可利用成分会越来越多,需进行填埋处理的垃圾越来越少。我国政府有关部门已经就此作出了一些具体规定,许多城市也正在开展此项工作,并取得了一定的成效。随着城市居民生活水平的提高,居民燃料结构的变化,生活燃料方式的改进,石油液化气、煤气、天然气将逐步代替煤碳,灰分的产生量将急剧下降,将对垃圾减量产生明显的效果。

2减量化带来的效益

垃圾经减量化后再进行填埋所带来的效益可以从两个方面来计算。

第一是间接效益。建一个填埋场需要大面积的空旷地带,且一个耗资几千万元甚至上亿元资金的填埋场的使用寿命是有限的,如长沙市1998年投资达6 620万元动工新建的一个占地792 000m2,容积为5 000万m3的垃圾填埋场,使用寿命预计60年;郴州市投资达l 944万元的垃圾填埋场从2002年8月开始兴建预计到2003年8月底竣工的一个占地98l 000m2,每年接纳16.4万t生活垃圾,使用寿命预计ll~12年,同时新建填埋场的场地按规定要求场址距离市区7km以远,在城市周围满足这种条件的地方已越来越难以寻找,因此建场成本、管理成本、运输成本也将越来越大。生活垃圾减量化后再进行填埋处理能延长填埋场的使用时间,间接地降低了垃圾填埋场的年均成本,提高了经济效益。

第二是直接效益。就现在的生活垃圾成分而言,如果废纸按0.15元/kg、金属按0.25元/kg、玻璃按0.15元/kg、塑料按0.15元/kg、饮料瓶按0.05元/个计算,在一个不到l 500人生活的小区内,每月分选出来的废品卖出后将有l 026.72元(256.68元/周X4周)的收益,这些钱可用于支付保洁工的工资或补贴他们的奖金。据有关资料表明(北京日报2000年1月13日)1998年,北京8.2万人的垃圾大军从源头上捡走垃圾350万t,总收入达到9.3亿元。而当年,北京市城八区由环卫局清运的垃圾仅为270万t,市政府用于处理这些垃圾的费用就达7.5亿元,因此,实行垃圾减量化,不仅能增加就业机会,提高相关人员收入,而且能减少政府财政支出。

3减量化的有序操作

实行垃圾减量化的关键是对垃圾进行分类处理,这不单是环保、环卫部门的工作,也涉及到一个社区、一个城市的综合管理的问题,它需要多部门的配合和社区、城市中所有公民的配合。生活垃圾分类处理是一种有序的、有目的活动,这需要大批受过一定专门训练的保洁人员来进行收集、分类,同时相应地解决了一批富余劳动力的再就业问题。

减量化操作程序:

居民将可再利用的物质和不能再利用的物质分开放置

→专业保洁员定时上门收集或在固定地点收集→运送

{

可利用的送专业回收站

至垃圾站进行分选→

不可利用的进行填埋

危险品按特定要求处理

如在垃圾产生的源头就进行有效的分类,在收集时也分类收集、放置,那么,垃圾最后的处理就简单得多,效率也就高得多。

虽然从某种意义上讲垃圾大军的废品分选、回收、销售,实现了垃圾资源的部分再生利用,提高了部分资源的利用率。但是实际生活中这种处理往往是无序的,如捡破烂的无业人员扰乱,由于他们只捡拾那些回收价值高的矿泉水瓶、报纸、金属等废弃物,而对其它回收价值较低的废弃物又打乱放在一起,这种有序的工作环节一旦遭到无组织的破坏,保洁工人重新收拾“残局”时,将耗费大量的人力、物力,而且也失去了生活垃圾分类的意义。据2000年2月19日北京日报报道在生活垃圾分类处理做得好的北京宣武区的建功南里小区,原本花巨资建立了20个密闭式的清洁回收站的垃圾分类系统,并且给所有能再生的非生物垃圾资源找到了造纸厂、炼油厂、塑料厂等接收单位,但因捡破烂的无业人员扰乱,使得原本可以产生效益的系统变成了每拉一车废品,要倒贴40元。

所以说垃圾减量是一个系统工程,需要各部门的有效配合,可以通过实行垃圾分类回收,有效宣传环境与资源意识,让市民自觉的避免产生废弃物,尽可能循环利用各种物资;同时通过立法从工业品生产的源头规范清洁生产,限制过量包装,降低资源消耗,限制垃圾的排放量。有一点要强调的是。将城市生活垃圾进行减量化不是生活垃圾分类处理的目的,减量化后再资源化、无害化、产业化才是城市生活垃圾分类处理的最终目的。

三峡工程是一个耗资巨大,造福子孙的系统工程,大量移民需要重新建镇进行安置,新城镇的规划建设中有必要对生活垃圾的减量化、资源化、无害化、产业化等一系列问题加以考虑,垃圾的分类处理得到规范管理,减少垃圾对大气、水体、土地的污染,同时也能减少垃圾处理过程中所产生的废水对水系的影响。

三、元素迁移作用实例

地壳中元素赋存状态受环境物理化学条件制约。地质作用中形成的矿物和岩石,当环境改变时,则变得不稳定,它们会自发地产生变化与环境达成新的平衡。这一过程中元素原来的结合方式解体,重新组合和分配,如果在转变过程中形成活动态还将发生空间上的位移。

实例1锡石-石英脉型及锡石-硫化物型热液矿床地球化学研究

巴尔苏科夫(В.Л.Борсусов,1968)对苏联某锡石-石英脉型及锡石-硫化物型热液矿床的地球化学研究就是研究元素地球化学迁移的一个范例。

(1)花岗岩中锡的活化

两类锡矿床都与花岗岩密切相关(图4-2),含矿花岗岩中的锡含量高出锡在酸性岩中克拉克值的4~5倍,达(16~30)×10-6,常见为(18~20)×10-6;而不含矿的花岗岩含锡量为(3~5)×10-6。花岗岩中 80%~100%的锡集中于黑云母中,石英、长石实际上不含锡。锡在黑云母中的含量相当均匀,变化于(80~400)×10-6。显微镜下观察黑云母未发现锡石的颗粒;将黑云母单矿物研细到200~300目,用碘甲烷提取,离心机分离,经分析证明,处理前后的黑云母锡的含量未有变化,从而证明了锡是以类质同象形式进入黑云母晶格,而不是独立的微细粒的锡石。类质同象置换以下列方式进行:

Li++Sn4+→Mg2++Fe3+

图4-2苏联某锡石石英脉型矿床不同标高锡的含量曲线(a)及垂直分带示意图(b)

(据赵伦山等,1988)

Ⅰ~Ⅳ—矿体不同部位Sn的含量曲线。1—第四系覆盖层;2—黑云母花岗岩;3—石英脉;4—锡矿体;5—云英岩化带;6—钠长石化、白云母化花岗岩

在锡石-石英脉发育地段,花岗岩遭受强烈的岩浆期后自变质作用,主要为长石的钠长石化和黑云母的白云母化。蚀变后的二云母花岗岩含锡为 12×10-6,大大低于未受自变质作用的黑云母花岗岩(平均27×10-6)。白云母锡含量也低于黑云母。对白云母的细粉末作离心分离试验时,证明其中含有少量微细颗粒锡石。事实证明,在白云母化过程中包含于黑云母中的锡被从晶格中活化,一部分形成锡石颗粒保留于白云母矿物微裂隙中,另一部分则被溶液带走。巴尔苏科夫认为,黑云母的白云母化实质是三价离子 Al3+和Fe3+代替六次配位的Mg2+和Fe2+,交代作用的同时锡被排出晶格。锡在白云母化过程中被带出导致了锡石-石英矿脉下部花岗岩中锡的负异常,如图4-2a所示。花岗岩中大量的锡被浸滤带出,进入蚀变溶液,据计算每立方米的白云母化花岗岩带出锡 10~60g,这便是形成锡石-石英脉的锡的来源。

(2)锡石-石英脉型矿床分带结构

如图4-2b上部含矿带在脉的两侧对称地发育云英岩化,向外很短距离内就过渡到未蚀变的黑云母花岗岩。在脉旁云英岩中出现锡石、萤石及黄玉。向下云英岩蚀变带的厚度收缩,但是钠长石化和白云母化带的厚度增大。锡伴随这种分带而分布:在上部带中,锡在脉旁云英岩中的含量为(30~207)×10-6,远离脉壁逐渐下降;在中下部带中,锡在脉旁有个狭窄的迁出带;在最下面带中,出现锡的强烈迁出带,即负异常带,见图4-2a。在综合分析上述资料的基础上,巴尔苏科夫认为,在富集锡方面起主要作用的是岩浆期后自变质作用。

(3)锡的搬运和沉淀

深部花岗岩的钠长石化和白云母化表明自变质溶液早期是富钠的并具碱性;锡石-石英脉以及云英岩中的萤石(CaF2)、黄玉(Al2[SiO4](F,OH)2)等反映了氟对锡的搬运作用。氟的活动以及云英岩化作用中的Ca、Mg、K等的淋滤表明在锡石沉淀时,热液的pH值已有所下降。

根据矿物气液包裹体的化学成分测定结果,锡石沉淀时热液含有大量的 F、Na、K、Ca、Cl、

等成分(含F-达2.85g/L)。均一法测得锡石的形成温度为250~300℃,而溶液的pH值<6~8.3。为了证实F对Sn的搬运作用,及可能的氟锡络合物的化学性质,巴尔苏科夫进行了成矿过程模拟实验。配制了与气液包裹体成分相近的实验溶液,在含氟的钠-钾-氯化物溶液中,当温度达 300℃,压力为 500×105 Pa及 pH=7~10的范围内,在同时存在重碳酸离子、硼酸离子和二氧化硅的情况下,锡形成稳定的 [Sn(F6-x,OHx)]2-型氟-氢氧络离子。式中x值取决于溶液的pH值,它随pH值的增加而增大,同时还证明当pH值下降到 7.5~8.0时,络离子水解,Sn则呈锡石析出,同时形成 HF。实验所得Na2 [Sn(F6-x,OH)]络合物的形成、稳定和分解的条件同分析矿床形成过程的物理化学条件基本吻合。过程中成矿溶液由碱性逐渐中和,络合物分解释放出来的 HF与其他组分作用形成含氟矿物。

(4)锡成矿模型

巴尔苏科夫指出,富Na和F的碱性岩浆期后溶液由深部沿裂隙向上运移,使花岗岩发生自变质作用,长石钠长石化,黑云母白云母化,黑云母晶格中的Sn被活化。Sn进入溶液形成Na2 [Sn(F6-x,OHx)]络合物向上运移,此时溶液具碱性,络合物是稳定的。黑云母被白云母交代的同时释放出了Fe2+和Mg2+,它们与溶液中的 B、SiO2、As、S结合形成电气石和毒砂。

含有Na2 [Sn(F6-x,OHx)]的溶液继续上升,经钠长石化,溶液中 Na的浓度降低,溶液pH值下降。当溶液变为弱碱性至中性时,氟锡络合物变得不稳定,通过高温水解作用形成锡石和游离 HF:

地球化学

这将引起热液的迅速酸化,酸性溶液作用于上部花岗岩,导致碱金属的淋滤带出形成云英岩:

地球化学

地球化学

HF与围岩的Ca作用形成萤石。

这样,巴尔苏科夫系统地说明了锡在深部带出和在上部的集中,解释了矿脉及蚀变的垂直分带,各带的矿物组合及锡在矿脉两侧的分配。

实例2红土风化壳中自然金形成机理

众所周知,世界上许多地方包括巴西、西非以及西澳在内的红土风化壳上部成壤表层都有呈多种形式产出的自然金,从大的滚圆状天然金(nugget-like)颗粒,到裂隙和节理中的树枝状金,再到孔隙空间中的微小晶体。在西澳的 Yilgarn克拉通,回收红土剖面中的金是一主要的采金活动,偶尔还可发现一些质量超过1kg的块金。然而,这些环境中原生来源金中富含银(严格说是含5%~10%Ag、少量Hg及其他杂质的银金矿)。富集在红土剖面中的金得到了化学纯化。概因风化壳中大气降水渗流致使元素的活动性产生差异导致Au、Ag发生了分离。只有在近地表非常特殊的条件下Au和Ag才会发生分离(Robb,2005)。

(1)金存在的表生环境

对西澳地区近地表红土环境中地下水的研究表明,地下水呈酸性(pH<5)和氧化特征,受海水对降雨的影响具有低到中等的盐度。随深度增加,地下水pH值增大,水的碱性增强。而随Fe3+/Fe2+比值降低地下水也变得更为还原(图4-3)。

图4-3典型红土剖面中Au和Ag重新分布的性质和特征

(据Robb,2005)

插图表示了两种机理,通过这样的机理,一个原生 Au-Ag合金颗粒将在红土化过程中被破坏,Ag偏向于被除去

(2)主要的控制反应体系

红土化过程主要受随地下水与风化壳反应和铁被氧化的水解作用控制。两种反应反映了过程的性质。以下反应描述了风化壳下部接近基岩部分黄铁矿等硫化物被水解破坏和形成氢离子的过程:

地球化学

下述反应表明潜水面附近二价铁被氧化形成含铁表土中针铁矿的过程:

地球化学

上述过程是红土化中的主控化学反应,可以解释为什么这样的环境中地下水呈酸性的原因。酸性基岩形成的红土比基性基岩上形成的红土酸性更强,后者的pH值被蚀变形成的重碳酸盐离子缓冲。

(3)来自实验研究的证据

Cloke and Kelly(1964)的研究证明,在低pH、高Eh和存在含Cl-的环境中,表生条件下的Au能呈

络合物进入溶液(图4-4),然而Au的溶解仅出现在有自由氧存在而使Fe2+完全被氧化的高Eh环境中。相比之下,在还原性更强环境中,与 Au相比,以几种络合物如AgCl(最稳定)、

等形式存在的Ag则更容易进入溶液。因此在更宽广的表生环境中,Au-Ag合金颗粒中的Ag更可能被淋滤而流失。

图4-4与河水或湖水有关红土剖面的E h-pH图解

(据Robb,2005)

表示 Au、Ag、Pt和Pd氯化物络合物的氧化还原电位和稳定性,以及控制它们溶解度的Eh值范围

(4)红土剖面中金再富集的地球化学模型

根据Au和Ag所呈现的氯化物物种和典型红土剖面的Eh-pH条件,显然,在潜水面上部近地表风化壳的酸性氧化和中等盐度条件下,原生 Au-Ag合金颗粒易于溶解。Mann(1984)的研究表明,金颗粒的破坏与Au和Ag的溶解,实际上产生于Au-Ag合金被铁的氢氧化物(如针铁矿)替代的过程中。然而针铁矿本身也含有细小颗粒的高纯度金,表明Au以针铁矿形式迅速发生了再沉淀,而 Ag则保留在溶液中并被迁移带走。因为金的高溶解度只能在高Eh条件下才能维持,只要弱还原条件下Eh有略微的减小,Au就会发生沉淀。如下列反应所示:

地球化学

溶解度降低和金的沉淀归因于流体与更为还原的风化壳的反应。当处于潜水面之下时,还原风化壳中的Fe2+和Mn2+含量随深度增加而升高。这是由于氧化还原反应控制了该环境中金的沉淀,这也解释了金与针铁矿和水锰矿的共生组合关系。而在金沉淀的同时,银则作为AgCl保留在溶液中并被搬运离开金沉淀位置。]]

需要强调的是,氯化物配位体在促进金和银溶解的效率方面特别适用于像西澳这样干旱环境中的红土地区。而在湿润的赤道地区,因高降雨量的稀释效应和其他化合物的存在,氯化物离子活动能力降低,而腐殖酸和富里酸等对金的溶解可能起到更加重要的作用。

参考资料:矿用过滤机