首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
溶剂萃取 2024-09-30 18:36:08

钴的萃取方法(煤油萃取分离钴镍)

一、钴的钴镍常见的萃取萃萃取剂有什么

醇、醚、法分离酮、煤油酯、钴的钴镍酰胺、萃取萃硫醚、法分离亚砜和冠醚等中性有机化合物属中性萃取剂。煤油在这一类的钴的钴镍酯中还包括羧酸酯(如乙酸乙酯)和磷(膦)酸脂(如磷酸三丁脂),它们在水中一般都呈中性。萃取萃

羧酸、法分离磺酸和有机磷(膦)酸等属酸性萃取剂,煤油它们在水中呈现酸性,钴的钴镍可电离出氢离子。萃取萃

伯胺、法分离仲胺、叔胺和季胺等属碱性萃取剂,这些有机胺在水中能加合氢离子,显示碱性,其碱性一般强于无机氨,而季胺则有强碱性质。

扩展资料:

萃取剂的性能是由其结构决定的,作为萃取剂的有机试剂必须具备两个条件:

1、萃取剂分子中至少有一个功能基,通过它与金属离子结合生成萃合物,常见的萃取功能基是O、N、P、S等原子。这些原子都有孤对电子,是电子给予体,也叫做配位原子。在萃取剂中以氧原子为功能基的最多;

2、萃取剂分子中必须有相当长的碳链或苯环,长的碳链或苯环使萃取剂及萃合物具有易溶于有机相而难溶于水相的性质。但碳链过长,会使萃取剂的粘度增大或成为固体,而不宜用作萃取剂。萃取剂的相对分子质量一般在350~500的范围内。

二、分离与富集

利用铊(Ⅲ)与亚铊(Ⅰ)性质上迥然不同的特性,选择某一价态的反应以达到分离的目的。若欲还原铊(Ⅲ),可在酸性介质中用亚硫酸还原之,再煮沸驱尽过剩亚硫酸。如欲氧化亚铊(Ⅰ),则应用溴、氯或王水并造成氧化环境下进行。

铊的分离与富集方法有沉淀分离、溶剂萃取、离子交换与吸附、金属接镀法等。

62.4.2.1沉淀分离法

在经典的沉淀法中,只有铬酸盐沉淀法比较可靠。通常须先沉淀分离伴生元素,然后再用铬酸盐沉淀亚铊。常用的沉淀分离方法如下:

与银的分离。可在稀硝酸介质中用饱含氯的盐酸或王水沉淀银,铊(Ⅲ)可留于溶液中。

与砷和锑的分离。将溶液氨化,加1~2mL(6+94)H2O2,煮沸使砷和锑氧化至高价状态,再以铬酸盐沉淀亚铊。

与锡的分离。溶液经氢氧化铵中和后,用乙酸酸化并加水稀释至大体积,加2~3gNH4NO3,煮沸,则锡呈偏锡酸析出。滤液蒸发至适当体积,氨化后用铬酸盐沉淀亚铊。

与铅、铋、锰的分离。将硝酸盐中性溶液煮沸,加磷酸氢二铵首先沉淀铋,滤出,水洗。滤液中加20mL300g/L磺基水杨酸溶液,补加磷酸氢二铵并加氢氧化铵使铅和锰沉淀完全。滤液用铬酸盐沉淀亚铊。

与银、汞、铜的分离。溶液氨化后,加氰化钾将这些金属配位(络合),用铬酸盐沉淀亚铊。

与镓、铟、铝、铁、铬、锌、镉、镍、钴、硒的分离。在试液中加入20mL300g/L磺基水杨酸,加氢氧化铵氨化,用铬酸盐沉淀亚铊。若不含前面五种三价金属离子,只要加足够量的氢氧化铵和硝酸铵变可使二价金属离子保留于溶液中。

如伴生元素的存在情况不清楚,可用如下分离操作:

在硝酸介质中,加20~30mL300g/L磺基水杨酸溶液和过量的磷酸氢二铵,用氢氧化铵氨化之后,煮沸,放置过夜。过滤,用20g/LNH4NO3溶液洗涤,滤液蒸发缩小体积后,冷却。加氰化钾至游离金属离子的颜色褪去,用铬酸盐沉淀亚铊。

在含有酒石酸-氰化物的碱性介质中,可用乙硫醇酰萘(thionalide)沉淀铊(Ⅰ),这是一种特效沉淀剂。

矿石中铊含量甚微,可用共沉淀方法使之沉淀分离。例如用铬酸盐沉淀铊(Ⅰ)时,加铬酸钡作共沉淀剂。在0.2mol/LHCl中,TlCl-4与对二甲基氨基偶氮苯和甲基橙共沉淀,其中甲基橙为共沉淀剂。虽然沉淀铊还可应用其他共沉淀剂,但大多无实用意义,故不详述。

铊在稀盐酸或硫酸介质中,可被金属锌或金属镁还原成金属状态析出。

62.4.2.2溶剂萃取法

矿石分析中最常用的分离方法是溶剂萃取法。

(1)卤化物的萃取

a.乙醚。铊(Ⅲ)的氯化物在2~6mol/LHCl中可为乙醚定量萃取而与铅等大量伴生元素分离,但在6mol/LHCl中,镓、锑(Ⅴ)、砷(Ⅲ)、锗、金(Ⅲ)、铁(Ⅲ)、钼(Ⅵ)和锡(Ⅱ)也被大量萃取。

b.乙醚或乙酸异戊酮。在1mol/LHBr中,用乙醚或乙酸异戊酮萃取铊(Ⅲ),可与锑、汞、铬、钒、钼、钨、铁、铟、锌、碲、镓等分离。只有金(Ⅲ)与铊(Ⅲ)一起被定量萃取。

c.甲基异丁基甲酮(MIBK)。在1.2mol/LHCl介质中,40g/L抗坏血酸-33.3g/LKI存在下,Ag、Cd、Tl均可被MIBK定量萃取,并与可能进入有机相中的Au、Te、Sb、As、Pb、Cu、Zn、In、Bi、Hg元素基本分离,能进入有机相中的干扰元素(1000倍量),不干扰用有机相直接AAS测定痕量Ag、Cd、Tl。

d.乙酸丁酯。Tl3+在0.2~0.5mol/LHBr中,能被乙酸丁酯完全萃取;酸度大于3.0mol/LHBr时,有部分In被萃取,至5.0mol/LHBr时,才有微量Ga被萃取。可在0.2mol/LHBr中萃取Tl3+,与Ga、In完全分离。在3.5mol/L(HCl+HBr)-333g/LNaCl介质中,Ga、In可定量被萃取,此时富集度最高。对50μgGa、In、Tl在抗坏血酸-柠檬酸存在下,可消除大部分基体干扰。当Zn大于20mg、Mg大于40mg、Mo大于2mg时,对有机相AAS测定Ga、In有负干扰。

e.TBP和TOA。TBP和TOA以苯作稀释剂,在盐酸或氯化锂介质中,文献研究了对Ga、In、Tl的萃取行为:TBP萃取金属Ga、In、Tl的效果依次为,低酸度下Tl>Ga>In,在高酸度时Ga>Tl>In;TOA萃取金属的效率依次是Tl>Ga>In。0.1mol/LHCl可反萃取Ga、In,0.1mol/LNaOH可反萃取Tl。

(2)硫代磷酸萃取

在不同硫酸介质中,研究了二(2-乙基己基)单硫代磷酸(D2EHMTPA)、二(2-乙基己基)二硫代磷酸(D2EHDTAP)和二(2-乙基己基)磷酸(D2EHPA)萃取Tl+的行为。当pH1.5~3时,D2EHMTPA和D2EHDTPA能完全萃取Tl+,而D2EHPA只能定量萃取Tl+,并且随着硫酸酸度的增加对Tl+的萃取能力逐渐下降,当酸度大于4mol/L时,Tl+萃取率为零,可以此作为Tl+的反萃剂。

(3)TritonX-114浊点萃取

在pH12.0的硼砂缓冲溶液中,90℃水溶2h,2g/LTritonX-114浊点可定量萃取Tl,与能和氢氧化物形成沉淀的干扰元素分离,方法用于石墨炉原子吸收法测定水中痕量铊(Ⅲ),加标回收率为98%~100%,检出限为0.018g/L,RSD≤13.7%。

(4)螯合物、离子缔合物的萃取

a.碱性染料。Tl3+的卤阴配离子与碱性染料阳离子形成的缔合物在表面活性剂存在下,被有机溶剂(苯、甲苯、二甲苯、乙酸异戊酯等)所萃取,与大量干扰离子分离,常被用于光度法测定Tl。

b.二硫腙。铊(Ⅰ)与二硫腙形成的螯合物易为某些溶剂所萃取。如在pH>8时,可为三氯甲烷萃取。当有氰化物作掩蔽剂,在pH11左右用四氯化碳长时间萃取铊可与许多元素,如银、汞(Ⅱ)、镍、铜(Ⅱ)、锌和镉等分离。铅、铋、锡(Ⅱ)和部分锰与铊一起被萃取。过多的锌、汞和镍存在使铊的萃取不完全。

62.4.2.3离子交换与吸附法

(1)离子交换树脂分离

常用离子交换法使铊与其他元素分离。如在碱性溶液中,使用阳离子交换树脂使铊呈阳离子状态被交换树脂吸附,锑则以SbO3-3(或SbO2-4)阴离子状态保留于溶液中。在溶液中加入酒石酸、柠檬酸或草酸,则铊可与更多的元素分离。

亚铊(Ⅰ)与阳离子交换树脂的亲和力大于碱金属离子,小于银离子,其顺序为:

Ag+>Tl+>Cs+>Rb+>NH+4>K+>Na+>H+>Li+

在pH4的EDTA溶液中,强酸性阳离子交换树脂保留铊(Ⅰ)在柱上,而汞、铋、铜、铁、铅和锌通过交换柱。再用2mol/LHCl洗提铊(Ⅰ)。

铊(Ⅰ)在柠檬酸、乙二胺四乙酸、甘氨酸、邻苯二酚-3,5二磺酸、酒石酸、草酸和焦磷酸钠溶液中(pH3~5)均不形成配合物,能被阳离子交换树脂吸附,可与铜、铅、锌、镉、铁、锑等元素分离。

利用强碱性阴离子交换树脂进行交换,可使金与铊彼此分离;在0.05mol/LH2SO4中,金经静态交换被吸附除去。

(2)色谱分离

a.N263-P350混合色谱柱分离。以(X-5)型聚乙烯苯树脂为载体,负载N263-P350(2+1)组成的混合色谱柱,在1mol/LHCl-150g/LNaCl-0.05%H2O2-0.5g/LFeCl3存在下,Ga3+、In3+、Tl3+被混合色谱柱完全萃取。依次用1mol/LHBr解脱Ga3+,H2O2解脱In3+,10g/L抗坏血酸解脱Tl3+。当进行单元素或两个元素测定时,表62.11中条件均可获得满意结果。

表62.11各种可行的流动相

注:①适用Fe3+小于3mg的试样。

b.TBP萃淋树脂分离。在!=2%~10%王水介质中,Tl3+可被定量吸附,以0.5~5g/L(NH4)2SO3溶液作洗脱液,Tl3+转为Tl+而被定量洗脱。对0.5μgTl进行分离富集,20mgPb、Zn、Cu、K+、Na+、Mg2+,10mgNi、Cr,30mgAl、Ca,1mgCd被分离,未发现干扰。

用磷酸三丁酯-聚三氟氯乙烯柱上萃取色谱,可从王水介质富集铊(Ⅲ)与金(Ⅲ),先用0.5mol/LHNO3(含10g/LNaCl)洗除汞(Ⅱ)等杂质,用0.0002mol/LEDTA洗提铊(Ⅲ),金滞留在柱上。

c.纸色谱分离。试液中的Tl3+由3号色谱纸在7.2mLMIBK-8mL乙醇-4.8mL1.0mol/LHBr(体积比为9+10+6)的展开相中,展开3h,用结晶紫显色后,剪下铊色带纸片,于25mL0.58g/LNa2SO3溶液中加热微沸5min至黄色褪去,Tl3+可被完全解析。用镉试剂2B光度法测定铊,对25mL体积8μgTl3+进行分离,30mgFe3+,5.3mgCa2+,50mgCu2+,5mgPO3-4,20mg柠檬酸根不影响测定。方法回收率98%~102%,相对标准偏差≤4%。

d.硅胶-P350萃取色谱分离

在不小于1mol/LHBr介质中,Tl3+、In3+、Au3+可被硅胶-P350树脂萃取,以1mol/LHBr为淋洗液,用水洗脱In3+,而把Tl3+、Au3+留在柱上;再用1.5mol/LNaAc洗脱Tl3+,最后用10g/LNa2SO3溶液洗脱Au3+,实现了Tl3+、In3+、Au3+的连续色谱分离。用二甲酚橙光度法测铟,结晶紫光度测定铊,孔雀绿光度法测定Au,对20μg的Tl3+、In3+、Au3+进行分离富集,至少能分离100mgK+、Na+、Fe3+、Cu2+、Pb2+、Zn2+、Ni2+、Co2+,50mgCa2+、Al3+,20mgAs5+、Mn2+,2mgSb5+、Sn4+、Bi3+、Hg2+,0.5mgCr6+、Cd2+、Ag+,200mgCl-、SO2-4、NO-3。

(3)吸附分离

a.泡沫塑料吸附分离。在(1+9)王水介质中,用聚胺酯泡塑(动态吸附30min)可定量吸附Tl3+;泡塑在还原剂(亚硫酸钠、硫脲等)存在下,100℃水浴保持20min,Tl3+转为Tl+而被解脱,此时大量杂质保持在泡塑上,对分离测定Tl较为有利。Tl的回收率恒定在85%左右。用镉试剂2B光度法测定铊,对25mL含10μgTl3+进行回收,在三乙醇胺-氰化钠掩蔽下,1000mgFe3+,5mgAl3+,1mgZn2+,0.1mg的Pb2+、Cu2+,50μgTi4+、Co2+,20μgCd2+、Hg2+、Ag+及一般阴离子(未做最大量)不干扰测定,方法加标回收率为97%~106%,相对标准偏差≤4.1%。

b.活性炭吸附。在0.6~3.6mol/LHCl介质中,Tl3+可被活性炭定量吸附。在加热煮沸10min或室温搅拌20min后,两者吸附率基本相同,吸附率为96%~99.5%,动态吸附容量在20mg/g以上;40~60℃的0.5g/L的(NH4)2C2O4溶液,可定量解脱Tl3+。用于8羟基喹啉紫外光度法测定痕量Tl,Cu2+、Fe3+、Ag+干扰允许量得到极大提升。

c.聚酰胺树脂分离。在!=0.1%~20%王水,0.01~2.0mol/LHCl介质中,Tl3+的吸附率在97%~103%之间。用0.025mol/LNa2SO3-0.025mol/L抗坏血酸-0.02mol/LH2SO4混合液,Tl3+可定量洗脱。在吸附过程中常见离子不被吸附,只吸附贵金属离子,解脱时,控制适当酸度。Pd2+、Pt2+、Au3+和Ag+有部分吸附。

62.4.2.4液膜分离法

(1)正十六胺载体膜

以正十六胺-L113B-煤油(体积比为6+5+89)为膜相,0.040mol/LNaOH溶液为内相,油内比为(体积)1+1;0.040mol/LKCl-0.060mol/LHCl溶液为外相,乳水比(体积)为3+40。以200r/min速度搅拌7min,Tl3+的迁移率达99.5%以上,Na+、K+、Cu2+、Pb2+、Cd2+、Co2+、Ni2+均不迁移。可用于分离黄铁矿及其焙烧灰渣中的Tl,回收率为98.6%~99.7%。

(2)TBP+N503载体膜

以(5+1)TBP-MIBK-N503-聚丁二烯-磺化煤油(体积比为5+2+3+90)为膜相,内相为0.4g/L硫脲-10mg/LNa2SO3溶液,油内体积比为1+1;外相为2.5mol/LHNO3-9.6g/LNH4F溶液,乳水体积比为1+5。温度20~35℃,以250r/min转速搅动拌8min,Tl3+回收率达99.4%以上。在选定条件下,迁移0.5mgTl3+,25mg的碱金属和碱土金属,10mg的Cu2+、Pb2+、Co2+、Ni2+、Cd2+、Al3+、Mn2+、SiO2-3、NO-3都不影响迁移富集Tl3+。Au3+、Sn4+对迁移有影响,但在NH4F存在下,至少能阻止4mgAu3+、20mgSn4+。1mgPt4+、Pd2+、Rh3+和Ir3+不影响Tl3+的分离富集。大量Cl-、ClO-4对迁移Tl3+有影响,尽量少引入。用于工业废水中Tl的分离,回收率为99.4%~100.6%。

62.4.2.5金属接镀分离法

在盐酸溶液中利用金属铜接镀,可使铊与某些干扰元素分离。铜的标准氧化还原电位E(Cu2+/Cu)=+0.344V,汞、银、金和锑的氧化还原电位分别为E(Hg2+/Hg)=+0.791V、E(Ag+/Ag)=+0.800V、E(AuCl-4/Au)=+1.00V、Sb5+/Sb3+=+0.75V。用甲基紫比色法测定铊时,可用铜丝接镀以消除金、汞和锑(Ⅴ)的干扰。铜丝接镀要求的酸度约为0.15~0.2mol/LHCl。接镀后的溶液,应逐滴加入(3+7)H2O2使铜盐溶解,再过量5~6滴使铊氧化,静置30~40min后进行比色测定。

铜丝接镀分离不适用于有大量汞、锑等存在的试样,因需数次接镀,且不易分离完全,使铊的测定结果偏低,遇此情况宜在溶解试样后加氢溴酸-硫酸冒烟挥发除去。金也可用氯化亚锡还原成元素状态,过滤与铊分离。用氢氧化钠沉淀铊(Ⅲ),可使铊与金、钨、钼分离。

三、萃取剂详细资料大全

能与被萃取物形成溶于有机相的萃合物的化学试剂。在湿法冶金中,萃取剂的作用是与被萃取的金属通过配合化学反应生成萃合物萃入到有机相,又能通过某种化学反应使被萃取的金属从有机相反萃取到水相,由此而达到金属提纯与富集的目的。萃取剂是影响萃取工艺成败的最关键因素。

基本介绍中文名:萃取剂外文名:Extractant作用:分离、提纯与富集原则:与原溶液中的溶剂互不相溶特点:形成溶于有机相的化学试剂领域:冶金、医药、石油、化工等分类,性能,中性萃取剂,中性含氧萃取剂,中性含磷萃取剂,中性含硫萃取剂,酰胺类萃取剂,酸性萃取剂,羧酸,酸性含磷萃取剂,碱性萃取剂,螯合萃取剂,套用,反萃取,其他学科定义,环境科学,土木建筑,化工过程,分类萃取剂的种类繁多,没有统一的分类方法。鉴于它是一类有机化合物,因此,通常根据质子理论按有机化合物酸碱性的划分,分为中性萃取剂,酸性萃取剂和碱性萃取剂;此外,有一类萃取剂多数为质子酸,通常具有螯合剂的性质故归属为螯合萃取剂。醇、醚、酮、酯、酰胺、硫醚、亚砜和冠醚等中性有机化合物属中性萃取剂。在这一类的酯中还包括羧酸酯(如乙酸乙酯)和磷(膦)酸脂(如磷酸三丁脂),它们在水中一般都呈中性。羧酸、磺酸和有机磷(膦)酸等属酸性萃取剂,它们在水中呈现酸性,可电离出氢离子。伯胺、仲胺、叔胺和季胺等属碱性萃取剂,这些有机胺在水中能加合氢离子,显示碱性,其碱性一般强于无机氨,而季胺则有强碱性质。螯合萃取剂是一类在萃取剂分子中同时含有两个或两个以上配位原子(或官能团),可与中央离子形成螯环的有机化合物。如羟肟类化合物的分子中同时含有羟基(-OH)和肟基(=NOH)。再如8-羟基喹啉及其衍生物(Kelex100等)的分子中,同时含有酸性的酚羟基和碱性的氮原子。性能萃取剂的性能是由其结构决定的,作为萃取剂的有机试剂必须具备两个条件:(1)萃取剂分子中至少有一个功能基,通过它与金属离子结合生成萃合物,常见的萃取功能基是O、N、P、S等原子。这些原子都有孤对电子,是电子给予体,也叫做配位原子。在萃取剂中以氧原子为功能基的最多;(2)萃取剂分子中必须有相当长的碳链或苯环,长的碳链或苯环使萃取剂及萃合物具有易溶于有机相而难溶于水相的性质。但碳链过长,会使萃取剂的粘度增大或成为固体,而不宜用作萃取剂。萃取剂的相对分子质量一般在350~500的范围内。中性萃取剂中性萃取剂可细分为中性含氧萃取剂、中性含磷萃取剂、中性含硫萃取剂及酰胺类萃取剂。中性含氧萃取剂中性含氧萃取剂主要是指醇(ROH)、醚(ROR′)、酮(RCOR′)和酯(RCOOR′)类化合物。萃取剂配位体氧原子的电子密度和分子的偶极矩是决定这类萃取剂萃取能力的主要因素。因此,它们的萃取能力随着其路易斯碱性的增强而增大。在醇、醚、酮、酯四类化合物中,只有醇分子中含有-OH。由于-OH的存在,使得醇分子间生成氢键而发生自身的缔合作用,具有比其他三类中性萃取剂都高的沸点。中性含氧萃取剂都含有氧原子,故它们可以与水分子发生氢键缔合作用,在水中有一定的溶解度。醇、醚、酮和酯在浓的强酸中能生成盐,这类盐阳离子不仅可与无机酸根结合,也可以与金属配阴离子结合,使其能萃取许多物质。这类萃取剂能萃取金属的更主要原因是它们可与金属生成配合物进入有机相而被萃取。中性含磷萃取剂中性含磷萃取剂是指正磷酸分子中三个羟基完全被酯化或被取代后的化合物。凡是烃基直接与磷原子相连者,即凡具有碳磷键(C-P)的称为膦某,而凡不含碳磷键者,则称为磷某。在这类萃取剂上含有磷酰基(≡P=O),它是起萃取作用的官能团。中性含磷萃取剂与水分子缔合而生成缔合物,又因磷酰基氧原子也能提供孤对电子与质子结合生成盐。中性含磷萃取剂形成的离子能与金属配阴离子结合成为盐而萃取进入有机相。这类萃取剂还可通过磷酰基的氧原子与金属配位,形成中性配合物而被萃取入有机相。因为磷酸酯的稳定性比膦酸脂差,当这类萃取剂长时间与无机酸接触时会发生水解反应。各类无机酸对中性含磷萃取剂水解反应影响的大小顺序是HI>HBr>HCl>HNO 3>H 2 SO 4;此外,随着温度及溶液中酸的浓度增高,这类萃取剂的水解速度变大。在中性含磷萃取剂中,随着分子中烷氧基的减少,烷基的增加,萃取能力增加的次序为:(RO) 3 PO<RPO(OR) 2<R 2 P(O) OR<R 3 PO。烷基的空间效应对该类萃取剂的萃取能力也有影响,一般在烷基碳原子数目相同的萃取剂中,随着支链的增加,空间位阻增大,萃取能力明显下降。中性含硫萃取剂中性含硫萃取剂对一些贵金属有很强的萃取能力,而对它们的选择萃取性能也较好。根据皮尔逊(Pearson)的硬软酸碱原理,萃取剂中作为电子给予体的硫是软碱,而汞、铂、钯、金、银、铊、碲等作为电子接受体则是软酸,按硬软酸碱原则中硬亲硬,软亲软的规律,含硫类萃取剂可与贵金属形成稳定的配合物而被萃取入有机相。因此,中性含硫萃取剂为贵金属分离的特效萃取剂。酰胺类萃取剂这类萃取剂最重要的是取代酰胺。酰胺分子中氨基—NH 2上氢原子被烃基取代后的化合物称为取代酰胺。取代酰胺中的氨基不呈碱性,这是由于分子中氮原子孤电子对与羰基=C=O中的π电子形成一个p-π共轭体系;加之氧的负电性较大,从而使氮原子的电荷密度降低,而羰基氧原子的电荷密度升高,因此,这类有机化合物都是中性的化合物。取代酰胺分子中的羰基氧原子对氢离子或金属离子具有较强的配位能力,因此,其配位能力比酮强,比中性含磷萃取剂弱。氧原子上电荷密度增加的顺序是RCOR<RCONR′ 2<(RO) 3 PO,萃取能力的顺序也是如此。在酰胺分子的氮原子上有两个氢,氢键缔合能力较强,故它的水溶性较好,熔点较高,但取代酰胺由于失去了氢键缔合能力,其水溶性较差,化学稳定性好,这也是一类较好的萃取剂。酸性萃取剂酸性萃取剂在水中可电离出氢离子而得名。因在萃取中氢原子和水中的金属阳离子进行交换,故也称为液体阳离子交换剂。根据电离常数K a的大小,可将酸性萃取剂分为强酸性萃取剂(离解常数K a>1),中强酸性萃取剂(K a≈10)。和弱酸性萃取剂(K a≈10)。羧酸和酸性含磷萃取剂是最重要的酸性萃取剂。羧酸羧酸是一类重要的酸性萃取剂,由于分子间产生缔合作用,通常以二聚体形式存在。因K 2是二聚反应产生的常数,故称为二聚常数。羧酸通常都是弱酸,其酸性小于一般无机酸而大于碳酸,它可与碱反应生成羧酸盐(金属皂)。随着水溶液的pH值升高,羧酸在水中的溶解度增大,萃取时羧酸与金属离子进行阳离子交换反应。酸性含磷萃取剂酸性含磷萃取剂也是主要的酸性萃取剂,可把这类萃取剂看成是磷酸分子中一个或两个羟基被酯化或被烃基取代后的产物。这类萃取剂与羧酸一样,分子间也能发生缔合作用,呈二聚体存在。它的酸性较强,属强酸性萃取剂,萃取金属时也发生阳离子交换反应。烷基磷(膦)酸的萃取过程比较复杂,随萃取条件不同存在四种形式:(1)当水相金属离子浓度低、有机相负载很小时,二聚体烷基磷酸分子中仅一个氢离子参加反应;(2)若水相金属离子浓度较高,则烷基磷酸以单体形式与金属离子发生交换;(3)当水相中某种阴离子对金属离子具有很强的配合能力时,萃取剂阴离子可与这种阴离子一道和金属阳离子形成混合型的配合物而被萃取;(4)由于烷基磷酸的酸式电离与溶液酸度有关,因此,在高酸度的条件下,烷基磷酸电离受到抑制,这时烷基磷酸主要以磷酰基起作用,与中性含磷萃取剂相似。含有=P(O) OH基的磷(膦)酸萃取剂与羧酸相同,随着它的酸性增强,萃取能力增大,萃取能力的顺序是:(RO) 2 POOH>(R)(RO) POOH>R 2 POOH。随着这类萃取剂分子中碳-磷键的增加,烷氧基减少,吸电子效应随之削弱,导致pK a增大,酸性降低,萃取能力随之下降。碱性萃取剂碱性萃取剂的萃取反应机理是阴离子交换机理。属于这类萃取剂的主要有伯胺、仲胺、叔胺和季胺盐。伯胺、仲胺分子中含有N—H键,分子间可通过形成N—H……N氢键而缔合,但叔胺分子间不发生缔合。在有相同碳原子数的胺中,它们的沸点和熔点按伯胺、仲胺、叔胺依次降低。伯、仲、叔胺都能与水形成氢键N……H—O—H,因此,小分子量的胺易溶于水。随着胺分子中所含碳原子数目增加,水溶性降低。相对分子量为250~600的大分子量的胺在水中溶解度很小,能很好地溶于某些有机溶剂中,适宜于作萃取剂;分子量大于600的烷基胺大都是固体,在稀释剂中溶解度小,不宜作萃取剂。在胺类萃取剂中由于存在氢键,分子间会发生缔合作用,通常发生的不是双分子缔合而是多分子缔合。各类碱性萃取剂的缔合程度既与萃取剂的结构有关,也和稀释剂的性质有关。脂肪胺盐对硫酸盐以外阴离子的缔合易难顺序为伯胺盐<仲胺盐<叔胺盐<季胺盐。烃基具有支链的仲胺,由于支链妨碍形成氢键,故缔合能力较小。稀释剂的极性对碱性萃取剂缔合程度的影响规律是,稀释剂极性愈小,缔合程度愈大。胺与酸生成胺盐后,如果水相酸浓度高,便会发生胺盐与酸生成1/1的离子缔合体的反应,这种反应称为胺盐的加合反应。脂肪胺的碱性比无机氨碱性强,这是由于烷基取代脂肪胺的氢后,烷基给电子的诱导效应使氨基氮原子上的电荷密度增大的结果。在水溶液中叔胺碱性小于仲胺,这是由于空间位阻效应影响造成的,因三个烷基对氨基氮原子的禁止效应增大,从而阻碍了质子和氮原子的接近。长链胺的碱性强弱顺序是伯胺>仲胺>叔胺,对萃取金属配阴离子的选择能力大小的顺序是叔胺>仲胺>伯胺。因胺是弱碱,只能在酸性溶液中萃取,而季胺盐属强碱性萃取剂可在酸性、中性乃至碱性溶液中进行萃取。螯合萃取剂湿法冶金中所使用的螯合萃取剂主要是酸性螯合萃取剂,主要有羟酮类萃取剂、羟醛类萃取剂和喹啉类萃取剂。羟酮类萃取剂和羟醛类萃取剂属羟肟类化合物。羟肟分子中含有羟基(—OH)和肟基(=C=NOH),由于羟肟分子结构中具有不能自由旋转的碳-氮双键(C=N),故存在着顺反式异构体。两个羟基在双键同侧的为顺式,在异侧的则为反式。顺、反二式的含量一般为1/7左右。羟肟萃取金属是通过羟基氧原子及肟基氮原子与金属离子的螯合作用实现的。因此只有反式异构体才能萃取金属离子。顺式异构体中两个—OH在同侧,由于形成分子内氢键而不能萃取金属。羟肟苯环上的羟基能电离出氢离子而显示酸性,而肟基上的羟基电离出氢离子的能力很弱。含有酚羟基的羟肟的酸性会增强。羟肟类化合物对铜金属离子有较强的螯合能力,因此是铜的萃取剂。Lix63、Lix64N、Lix65N、Lix70N、Lix984等羟酮肟萃取剂对铜离子有高的选择性,是铜的特效萃取剂。羟醛肟萃取剂也是铜的特效萃取剂,5-壬基水杨醛肟是这类萃取剂的重要萃取剂,简称为P1或P50,它萃取铜的性能比羟酮肟类萃取剂好。套用从套用角度出发,萃取剂应具备的条件是:(1)萃取容量要大,即单位浓度的萃取剂对被萃取物质有较大的萃取能力;(2)选择性要好,即对分离的有关物质有较大的分离系数;(3)化学稳定性好,即萃取剂不易水解,加热不易分解,能耐酸、碱、盐、氧化剂或还原剂的作用,对设备腐蚀性小,并具有较高的抗辐射能力;(4)水溶性要小而油溶性要大,即在水相中溶解度小,在稀释剂中溶解度要大,易与水相分层,不生成第三相,不发生乳化现象;(5)易于反萃取,即改变萃取条件时,能较易地使被萃取物质从有机相转入到水相;(6)操作安全,即萃取剂无毒性,无***性,不易燃(闪点要高),难挥发(沸点要高,蒸气压要小);(7)容易制备,原料来源丰富,价格便宜,但完全具备这些条件的萃取剂是相当少的,在选择萃取剂时只能综合考虑,抓住主要问题,根据具体条件来决定。已有几十种萃取剂获得了套用,但得到广泛套用的只有十余种。TBP广泛使用在萃取铀上,在萃取铀的阿梅克斯(Amex)流程中使用胺类萃取剂,达佩克斯(Dapex)流程则使用DEHPA。三烷基胺还广泛套用于萃取钨、钼、铼。烷基磷酸则广泛套用于萃取稀土,镍、钴、铟。P507能有效地用来萃取、Co、、Ga、In等。环烷酸是钇的特效萃取剂。酰胺类萃取剂如N503及A101在铌、钽分离,萃取铊,处理含酚废水上得到了实际套用。羟肟类萃取剂则广泛套用于铜的萃取。反萃取用反萃取剂使被萃取物从负载有机相返回水相的过程。为萃取的逆过程。反萃取剂主要起破坏有机相中被萃组分结构的作用,使被萃组分生成易溶于水的化合物,或生成既不溶于水也不溶于有机相的沉淀。反萃取过程具有简单、便于操作和周期短的特点,是溶剂萃取分离工艺流程中的一个重要环节。反萃取可将有机相中各个被萃组分逐个反萃到水相,使被分离组分得到分离;也可一次将有机相中被萃组分反萃到水相。经过反萃取及所得反萃液经过进一步处理后,便得到被分离物的成品。反萃后经洗涤不含或少含萃合物的有机相称再生有机相,继续循环使用。湿法冶金常用的反萃取剂主要有无机酸如H 2 SO 4、HNO 3、HCl及无机碱如NaOH、、Na 2 CO 3等。其他学科定义环境科学萃取过程中所用的溶剂。要求对液体或固体混合物中的组分具有选择性的溶解能力。如果是液液萃取,则还要求不溶或仅稍溶于被萃取的溶液中。萃取常用作废水处理物理化学方法之一。将萃取剂投到废水中,通过混合传质过程,水中的溶质(污染物)即溶于萃取剂中,借助比重的不同,将萃取剂与废水分离,废水得到一定程度的净化,而溶质(污染物)可从萃取剂中分离出来回收利用,萃取剂得到再生可重复使用。如含酚废水中的酚和洗毛废水中的羊毛脂均用萃取剂处理回收。常用的萃取剂有苯、二甲苯、轻焦油、醋酸丁酯、三甲酚磷酸酯、异丙醚等。土木建筑实现萃取分离所用的溶剂。可以是单组分溶剂,也可以用多组分混合溶剂。废水处理所用萃取剂的条件有:①对被萃取物有较高的分配系数,以节省萃取剂用量,提高萃取效率;②不溶于水或难溶于水,以减少萃取剂的流失;③与水的物理、化学性质有较大区别,如与水有一定的密度差,通过重力分离,便于把萃取剂与水分离开;或溶剂-水-溶质之间的沸点差别大,便于用蒸馏或蒸发的方法回收溶剂等;④易于回收与再生;⑤化学稳定性好;⑥无毒,以免流失的少量萃取剂产生新的有毒废水。化工过程指能够与被萃取物质结合,使后者转入其中的化学试剂。一般要求萃取剂对混合物中的欲萃组分有较高的萃取能力(即有较高的分配系数值),有较好的萃取选择性(即有较大的分离系数值),不溶或极少溶于被萃溶液,较高的沸点和闪点,有较高的热稳定性和化学稳定性,较小的腐蚀性和毒性以及价廉和容易取得等。萃取剂可用单组分溶剂,也可用多组分混合溶剂。例如用四乙二醇醚、N-甲基吡咯烷酮、环丁砜等作萃取剂,从催化重整生成油或加氢精制裂解汽油中提取芳烃;用二(2-乙基己基磷酸)作萃取剂,用煤油作稀释剂,用磷酸三丁酯作调节剂,从铀矿石的硫酸浸出液中提取铀;用三氯乙烯作萃取剂从咖啡中去除咖啡因等。萃取剂按性能可分为:中性萃取剂,如醇、酮、醚、酯、醛及烃类;酸性萃取剂,如羧酸、酸性磷酸酯等;螯合萃取剂也是酸性萃取剂,与被萃取离子生成螯环化合物,释放出氢离子;胺类萃取剂,如叔胺、季胺盐。反萃取所用的溶剂,称为反萃剂,对有机液的反萃取,通常用纯水或酸、碱、盐的水溶液。

参考资料:金属回收