首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
湿法冶金 2024-09-30 18:39:32

钴与镍的区别(钴与镍难分离)

一、钴镍关于电镀含镍废水处理

电镀废水的别钴处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的镍难优缺点,以及一些新材料在电镀废水处理上的分离应用。

01化学沉淀法

化学沉淀法是钴镍通过向废水中投入药剂,使溶解态的别钴重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,镍难从而达到去除重金属的分离目的。

化学沉淀法因为操作简单,钴镍技术成熟,别钴成本低,镍难可以同时去除废水中的分离多种重金属等优点,在电镀废水处理中得到广泛应用。钴镍

1.碱性沉淀法

碱性沉淀法是别钴向废水中投加NaOH、石灰、镍难碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。

但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。

2.硫化物沉淀法

硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。

但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。

3.铁氧体法

铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。

pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。

化学沉淀法的局限性

随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。

采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。

采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。

02氧化还原法

1.化学氧化法

化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。

常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。

2.化学还原法

化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。

该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。

以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。

03电化学法

电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。

该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。

电化学法主要有电凝聚法、磁电解法、内电解法等。

电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。

由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。

采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。

电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。

近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。

该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。

04膜分离技术

膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。

该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。

对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。

投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。

液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。

美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。

05离子交换法

离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。

此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。

研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。

Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。

使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。

通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见更多相关技术文档。

06蒸发浓缩法

蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。

在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。

07生物处理技术

生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。

1.生物絮凝法

生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。

生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。

生物絮凝剂可以分为以下三类:

(1)直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。

(2)利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。

(3)利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。

近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。

其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。

2.生物吸附法

生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。

可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。

研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。

吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。

壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。

通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。

用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。

3.生物化学法

生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。

从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。

R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。

4.植物修复法

植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。

该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。

李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。

可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。

08吸附法

吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。

活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。

以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),

然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。

纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。

纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。

结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。

09光催化技术

光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。

光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。

光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。

以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。

膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。

10重金属捕集剂

重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。

重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。

选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。

重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。

结语

电镀废水成分复杂,应尽量分工段处理。在选择处理方法时,应充分考虑各种方法的优缺点,加强各种水处理技术的综合应用,形成组合工艺,扬长避短。

重金属具有很大的回收价值且毒性大,在电镀废水处理过程中应多使用重金属回收利用的工艺,尽可能地减少排放。

基于化学沉淀法污泥产量大,电化学法能耗高,膜分离技术的膜组件造价高且易受污染等诸多问题,就现有电镀废水处理技术而言,应向着节能、高效、无二次污染的方向改进。

同时可与计算机技术相结合,实现智能化控制。还可结合材料学、生物学等学科,开发出更适合处理电镀废水的新型材料。

二、分离方法

分离铝的方法很多,常用的方法有氢氧化铵、苯甲酸铵、氢氧化钠等沉淀分离、离子交换分离以及萃取分离等,其中以铜铁试剂-三氯甲烷萃取法对于从大量铁、钛中分离铝的效果较好。

用氢氧化铵沉淀铝可使铝与硼、镁、碱金属、碱土金属,及一定量的镍、锰分离,沉淀的酸度为pH5~7。为了更好地控制沉淀的条件,常采用尿素或六次甲基四胺等弱氨性试剂,但铁、钛以及很多金属离子与铝同时沉淀,不能分开。因此,用这种方法分离铝必须和其他分离手段并用时方有效。

苯甲酸铵使铝沉淀,可与钴、镍、钒、锰和锌等元素分离,但铁(Ⅲ)也同时沉淀。为了防止铁(Ⅲ)沉淀,测铝溶液中应先加入次亚硫酸钠还原铁,再加苯甲酸铵沉淀铝。这样,大量铁虽可除去,但仍有少量铁(Ⅱ)很快地氧化为铁(Ⅲ)夹杂在铝沉淀中。因此必须将苯甲酸铝沉淀用酸溶解,在还原剂存在下,反复沉淀多次,才能使铁与铝完全分离。用苯甲酸铵沉淀铝,酸度应在pH3.8左右,加入次亚硫酸钠的量,以溶液中铁的颜色消失并过量0.2~0.3g为宜。

用氢氧化钠分离铝是沿用已久的方法,但分离并不很完全。为了减低氢氧化物沉淀对铝的吸附,通常在大量氯化钠存在下,小体积沉淀铁、钛等元素。即使如此,微克量的铝也难免不被吸附,特别是镁、镍、钙的氢氧化物沉淀对铝的吸附较大。分离方法是:将含铝的盐酸溶液,加热蒸发至体积为1~2mL,冷却,加入15gNaCl,搅拌均匀。加入10mL500g/LNaOH溶液,再搅匀后,加水稀释至60~70mL,用中速滤纸过滤,用洗液(250mL水中含2gNaCl、5gNaOH)充分洗涤沉淀,滤液酸化后测铝。

铜铁试剂又称亚硝基苯胲铵,在无机酸溶液中与很多金属离子包括铁(Ⅲ)、钛(Ⅳ)、钒(Ⅴ)、铀(Ⅳ)和锡(Ⅳ)等形成难溶性螯合物,此螯合物能用有机溶剂,如三氯甲烷、乙醚、乙酸乙酯、甲基异丁酮、邻-二氯苯等萃取。有机溶剂对金属螯合物的萃取能力与螯合物沉淀在酸中的溶解度有关,一般金属螯合物在强酸中的溶解度愈小愈易被萃取。萃取应在盐酸或硫酸溶液中进行,酸度通常约为10%(盐酸为1mol/L,硫酸为1.5mol/L)。这样可以保证微量铝也能与其他金属离子分离,酸度过低,例如pH>3.4时,铝亦被萃取进入有机相。铜铁试剂的用量,在理论上每0.1g铁只需要0.84g铜铁试剂。在实际工作中,铜铁试剂用量却要比理论值大,0.1g铁最少需要16mL60g/L铜铁试剂溶液,反应方能完全。铜铁试剂易于分解,配制时勿加热,萃取的全部过程均应在冷溶液中进行。

铝的分离,还包括离子交换分离和汞阴极电解等方法。离子交换分离是在9mol/LHCl中利用阴离子交换树脂使铝与铜、锌、镉、铁(Ⅱ)、铁(Ⅲ)、钴、锡(Ⅱ)、锡(Ⅳ)、锑(Ⅲ)、锑(Ⅴ)、锌、钒(Ⅴ)、钼(Ⅵ)、钨(Ⅵ)、铬(Ⅵ)、铀(Ⅵ)和锰(Ⅶ)等元素分离,铝不被吸附,交换后的溶液可测定铝。汞阴极分离是在硫酸或高氯酸溶液中以铂丝为阳极,汞为阴极进行电解,可使很多金属离子包括铁、铬、镍、铜、锡、钼、锌和铅等与铝分离,电流密度约为0.1~0.2A/cm2。上述两种方法测定铝时,分离杂质虽是有效的,但已很少使用。

三、火法分离富集法

火法试金是铂族元素分解和富集的最有效方法,它在铂族元素测定中占有重要地位。

64.2.1.1铅试金法

用于富集铂、钯、铑、铱4个非挥发性铂族元素,一次试金能捕集90%以上。铅试金熔剂对铬铁矿很难分解,夹在铬铁矿颗粒中的铂族元素很难捕集。硫化铜镍矿中的硫和镍对铅试金的干扰也不容忽视。因大量硫在熔炼过程中形成的冰铜相会捕集部分铂族元素,故铜镍矿试样必须减少还原剂的加入量,利用氧化铅使硫氧化。如硫含量很高,则可不加还原剂,甚至还要加入硝酸钾以氧化部分硫。镍可能进入铅扣,影响灰吹。当铅扣中镍在0.03g以上时,生成的氧化镍会粘在灰皿壁上造成灰吹无法进行。对于镍含量高的试样,需在熔剂中加入氧化铅的用量,过量的氧化铅使镍排入熔渣中。过量的氧化铅质量不应少于镍质量的100倍。铜量在2g以内对铅试金的影响可以忽略。

为了获得流动性很好的熔渣,加入活性助熔剂(碳酸钠、硼砂和过量氧化铅)的总量应达到称取试样质量的2.5倍,并加入玻璃粉使熔渣的硅酸度(熔渣中酸性氧化物所含氧原子物质的量与碱性氧化物所含氧原子物质的量的比值)在1~1.5之间。

铅试金法可分为熔炼和灰吹两个步骤。熔炼是将氧化铅、还原剂和助熔剂与试样混匀,置于试金坩埚中,在1000~1200℃高温炉中熔融,试样分解并逐步形成硅酸盐相(熔渣),贵金属化合物和氧化铅被还原为金属而形成金属相。捕集了铂族元素的金属铅沉到底部。当熔体倒入铁模中冷却后可取出已捕集贵金属的金属铅,称之为铅扣。灰吹是将铅扣放入预热的骨灰皿中或镁砂灰皿中,在900℃左右进行氧化熔炼,使熔融的金属铅氧化为氧化铅而渗入多孔的灰皿中,最后仅有金属珠(合粒)留在灰皿内。铅试金富集即告完成。

当铅扣中含有毫克量银时,灰吹得到的是银(含金)粒,银对铂、钯的灰吹有良好的保护作用,有利于后续的测定。但是铑和铱因不能像钯和铂能与银形成合金,故此时铑、铱在灰吹时损失可达50%。为了避免铑、铱的损失,可在熔炼时加入毫克量的铂,灰吹时形成铂粒,铂在灰吹的后期以铂铅互化物形成析出,带下一部分铂和铱。灰吹结束时,铂粒中还阻留相当量的铅,对铑、铱也有保护作用,故加铂灰吹,铱的损失仅在5%左右,而铑的损失更小。若加入6mg铂和4mg钯灰吹,效果更好。

铅试金法称取试样的量可高达100g,故取样的代表性好,取样误差可以不予考虑,富集的效果好,配料比较复杂。

试剂

硝酸银溶液(10g/L),稀硝酸介质。

铂溶液(5mg/mL)称取2.5g铂,置于500mL烧杯中,用王水溶解。加1gNaCl,蒸发至近干,取下,置于水浴上蒸干,用(1+1)HCl赶硝酸3次,取下。加入10mgFeCl3、10mgNiCl2、几滴HCl和300mL水,煮沸使盐类溶解。加10mL100g/LNaBr溶液,再煮沸使沉淀凝聚。用Na2CO3溶液调节pH至7,煮沸10min,再用Na2CO3溶液调节pH至8~9,保温30min。过滤以除去含铑、铱的沉淀,用100g/LNaCl溶液洗涤沉淀2次,用HCl中和滤液,移入500mL容量瓶中,用水稀释至刻度,摇匀。

分析步骤

(1)配料

以40g试样计,熔剂的大致组成为:Na2CO360g;Na2B4O720g;PbO50g,其中35g被还原为金属,15g造渣;若含铜、镍的试样,则氧化铅要适当过量,过量氧化铅应大于铜、镍质量的200倍;玻璃粉,加入量以调节硅酸度在1~1.5之间;面粉或硝石,调节还原能力,以产生30gPb为宜。

(2)熔炼

将混合均匀的试样与熔剂置于试金坩埚中。测定铂、钯时加入3滴10g/LAgNO3溶液;测定铑、铱则加入1mL5mg/mL铂溶液。将坩埚置于800℃试金炉中熔融30min,然后升温至1100℃,保持20min。将熔融体倒入铁模中,冷却,取出铅扣,砸去熔渣。

(3)灰吹

将骨灰皿放入高温炉中于900℃灼烧30min,取出,放入铅扣,再置于高温炉中,关闭炉门,升温至熔铅发亮,微启炉门,在900℃灰吹至尽。取出灰皿,冷却,将合粒取出。

64.2.1.2锍试金法

用镍的硫化物作为捕集剂的主要成分,得到的锍扣能捕集6个铂族元素,是目前应用较多的一种火法试金。铂族元素以硫化物的状态进入锍扣而与脉石分离。扣中的贱金属硫化物可被盐酸分解,而铂族元素保留在残渣中。扣中硫化铁的含量很低的称硫化镍扣,呈黄色,坚硬光亮,很容易与熔渣分离,但是必须经过机械破碎才能被盐酸分解。扣中硫化铁含量高的称镍铁锍扣,若扣中硫化铁的含量小于40%,也易于同熔渣分离;这种扣在空气中易风化,只要硫化铁含量大于20%,浸入水中几小时即可松散,无需机械破碎。对于超基性岩和硫化铜镍矿原矿,含硫化物不多而称样量较大,熔炼成镍铁锍扣是合适的;对于硫化矿精矿,因其含量很高,最好熔炼为硫化镍扣;利用试样中的硫同氧化镍反应,而在配方中不另加硫化铁,若过多的硫化铁留在熔渣中会引起铂族元素的损失。

锍扣破碎后其中的硫化亚铁、硫化亚镍可被6mol/LHCl溶解,在溶解过程中会生成絮状的硫化镍(β,γ-NiS),它不溶于HCl而溶于热的FeCl3溶液;但在FeCl3溶液中,铂族元素硫化物的溶解度增大,尤其是锇,其损失可达10%,这点尤需引起重视。若在试金熔剂中加入0.2g左右的锑,则铂族元素的损失小于5%。

铬铁矿试样需先用过氧化钠和氧化钙混匀后在850~950℃高温炉中焙烧2~3h后再进行锍试金。锍试金需加入熔剂、还原剂、氧化剂、硫化剂、捕集剂和覆盖剂等多种试剂。

石英粉和硼砂属酸性熔剂,前者能与许多金属氧化物化合生成硅酸盐,同时能得到流动性好的熔渣。当加入量过多时,会使渣的黏度增加,影响熔渣与试金扣的分离。也可以用玻璃粉代替,但其酸性较弱,1g玻璃粉的作用相当于0.3~0.5g石英粉。硼砂中的B2O3可与金属氧化物生成硼酸盐渣,其造渣能力比石英粉强,对试样的分解能力也比较强,形成的硼酸盐的熔点也比相应的硅酸盐低。碳酸钠既是碱性熔剂,又是脱硫剂。在试金配料中加入面粉是作为还原剂,将金属氧化物还原为金属或合金,借以捕集贵金属,同时将高价氧化物还原为低价,有利于与二氧化硅造渣。硫磺作为硫化剂在高温时能与镍等金属或金属氧化物形成硫化物。硫化镍或镍锍(Ni3S2)是贵金属捕集剂,理论上有96%以上的贵金属被其捕获。镍锍是硫化剂与镍的化合物在熔炼时形成的。必须特别注意,一般的镍试剂中往往含有较高的铂族元素,造成相当高的试剂空白,无法用于痕量铂族元素分析,需要经过较繁琐的提纯才能使用。羰基镍粉(用羰基法生产的镍粉)空白很低,可以直接用于锍试金法分析痕量铂族元素。

硼砂〔(Na2B4O7·10H2O)100℃烘烤脱水,研碎后备用〕、硼砂-碳酸钠(1+1)或食盐,作为覆盖剂可起到隔绝金属的作用,同时防止熔炼时熔融物的溅失。

熔渣的性质(还原性、硅酸度)对贵金属捕集的影响不容忽视。良好的熔渣应在炉内能迅速低温造渣,以有利于贵金属捕集;熔渣的流动性好;对坩埚内壁腐蚀较轻;熔渣的密度相对较小。熔渣的硅酸度(熔渣中所有酸性氧化物中氧原子物质的量)/(熔渣中所有碱性氧化物中氧的原子物质的量),以1.5~2为宜。

配料是试金中的关键步骤。不同的试样,配料有所不同。对于硅酸盐试样,需加入较多的碳酸钠和适量的硼砂;碳酸盐试样需加入较多的石英粉和硼砂;含有较多赤铁矿和磁铁矿的氧化矿试样,应适当增加还原剂用量;硫化物试样有较强的还原性,需要加大碳酸钠和二氧化硅的量,同时减少或不加硫化剂。如试样硫含量高时,则少加硫化剂。

常规试样的锍试金熔剂配方见表64.1。

表64.1锍试金熔剂配比(mB:g)

分析步骤

称取10~40g(精确至0.1g)试样,与试金配料混匀后倒入试金坩埚中,于900℃试剂炉内熔炼。再升温至1000℃并保持20~30min,待熔体平静后出炉,将熔体倒入铁模中,冷却后取出锍扣,剔除熔渣。

将锍扣置于烧杯中用水浸泡至完全松散成粉末,用盐酸溶解。

64.2.1.3锑试金法

用锑捕集铂族元素的火法试金称之为锑试金。它能捕集全部贵金属元素,灰吹时包括锇在内的铂族元素均无明显的损失,这是锑试金的优点;其缺点是捕集贵金属同时,铜、镍、钴、铋和铅也同时被捕集,又不能灰吹除去。故应用受到了限制,仅适用于组成简单的铂族元素单矿物或催化剂中铂族元素的测定。

锑试金的熔炼条件和铅试金类似,是用三氧化二锑代替氧化铅。熔炼温度为900~1000℃,锑试金要求高温进炉,快速熔炼。在熔剂中加入一定量的钾碱代替部分碳酸钠,可提高熔渣的流动性。只要熔渣流动性好,其硅酸度在0.8~1.7之间,对锑捕集能力无显著影响。

锑扣的灰吹在仰放的瓷坩埚盖上进行。三氧化二锑用挥发除去。铂族元素以及铜、镍、钴等元素以锑化物形式留在合粒中。灰吹温度在700~950℃对结果没有影响。铅、铋在锑之后被氧化,如果铅、铋量多,则它们最终会完全取代锑,锇则会全部损失;保留锇的关键是有锑。锑扣中有毫克量的铜或金对铂族元素有保护作用。

合粒中的铂族元素便于用光谱法测定。

分析步骤

称取5g以下(精确至0.1g)试样,与12gNa2CO3、4gK2CO3、4gNa2B4O7、2g玻璃粉、7gSb2O3和2g面粉成分混匀后倒入50mL坩埚中,加1滴氯化铜溶液(相当于1mgCu),将坩埚置于950℃高温炉中熔融至熔体平静,取出,将熔融体倒入铁模中,冷却后取出锑扣。

将锑扣放在仰放的瓷坩埚盖上,于850~900℃高温炉中灰吹。剩下约1.5mm的亮点取出坩埚盖,冷却,剔出合粒。供测定用。

参考资料:锂矿加工