首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
湿法冶金 2024-09-30 18:27:25

钴的萃取方法(电化学法分离镍钴的方法)

一、法分离法任务钴矿石分析方法的电化的方选择

任务描述

自然界已知含钴矿物有100多种,但具有工业价值的学法矿物仅十余种。钴在地壳中的镍钴含量约23×10-6,多伴生于镍、法分离法铜、电化的方铁、学法铅、镍钴锌等矿床中。法分离法本任务对钴的电化的方化学性质、钴矿石的学法分解方法、钴的镍钴分析方法选用等进行了阐述。通过本任务的法分离法学习,知道钴的电化的方化学性质,能根据矿石的学法特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中钴含量的高低不同以及对分析结果准确度的要求不同而选用适当的方法,能正确填写样品流转单。

任务分析

一、钴的性质

1.物理性质

钴(Co),原子序数是27,相对原子质量58.93,密度8.9g/cm3,熔点1495℃,沸点2930℃,具有光泽的钢灰色金属,比较硬而脆。钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、电化学行为方面,与铁和镍相类似,属于铁系元素。加热到1150℃时磁性消失。

2.化学性质

钴的化合价为+2价和+3价。在常温下不和水作用,在潮湿的空气中也很稳定。一般情况下与氧、硫、氯等非金属不起作用,但在高温下发生氧化作用,与氧、硫、氯、溴等发生剧烈反应,生成相应化合物。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。

由电极电势看出,钴是中等活泼的金属。其化学性质与铁、镍相似。

钴可溶于稀酸中,在发烟硝酸中因生成一层氧化膜而被钝化,在浓硝酸中反应激烈,在盐酸和硫酸中反应很缓慢,钴会缓慢地被氢氟酸、氨水和氢氧化钠侵蚀。钴在碱溶液中比铁稳定,钴是两性金属。

二、钴元素在地壳中的分布、赋存状态及其钴矿石的分类

钴在地壳中含量为23×10-6,很少有较大的钴矿床,明显比铁少得多,而且钴和铁的熔点不相上下,因此注定它比铁发现得晚。1735年,瑞典的布朗特在煅烧钴矿时得到钴。

Co(Ⅱ)的化合物有氧化钴、氢氧化钴、氯化钴、硫酸钴、碳酸钴、草酸钴等;Co(Ⅲ)的化合物有氧化高钴;钴的配合物有氨配合物([Co(NH3)6]3+、氰配合物[Co(CN)6]4-、硫氰配合物[Co(SCN)4]2-、羰基配合物[Co(CO)4]-、硝基[Co(NO3)4]2-或亚硝基配合物[Co(NO2)6]3-。

钴在矿物中与砷和硫结合,主要矿物有硫钴矿Co3S4,含钴57.99%;砷钴矿CoAS2,含钴28.20%;辉砷钴矿CoAsS,含钴35.50%;硫铜钴矿CuCo2S4,含钴38.06%;钴黄铁矿(Fe,Co)S2,含钴32.94%;方钴矿 CoAS3,含钴20.77%;钴土矿 CoMn2O5· 4H2O,含钴 18.37%;钴华 Co(AsO4)3·8H2O,含钴 9.51%;菱钴矿 CoCO3,含钴49.55%;赤矾CoSO4,含钴20.97%。

单独的钴矿床一般为砷化钴、硫化钴和钴土矿三种,前两种的工业要求大体相同。硫化矿(包括砷化矿)中的钴边界品位达0.02%、工业品位为0.03%~0.06%;钴土矿中的钴边界品位为0.30%,工业品位为0.50%。

与钴共存的元素主要为铁和镍。矿石中的铜、镍作为伴生元素回收。对于伴生的其他元素,也应查明含量及赋存状态以便考虑能否综合利用。

三、钴矿石的分解方法

钴矿试样一般可用盐酸和硝酸分解,必要时可用焦硫酸钾和碳酸钠熔融。如试样为硅酸盐时,可加氟化物或氢氟酸助溶。不被氢氟酸分解的含钴矿石,可以用过氧化钠或氢氧化钠-硝酸钾熔融。

砷钴矿试样需要用硝酸和硫酸加热到冒烟使其分解。当试样中含有大量硫或砷时,宜先灼烧除去大部分的硫或砷,然后再用盐酸或王水分解。

四、钴的分离富集方法

钴没有简便而选择性好的分离方法。目前常用的分离方法主要有氨水沉淀法、1-亚硝基-2-萘酚沉淀法、铜铁试剂沉淀法、萃取分离法、离子交换法等。

氨水沉淀法是在铵盐存在下,用氨水将溶液 pH调至8~9,Hg2+、Be2+、Fe3+、Al3+、Cr(Ⅲ)、Bi3+、Sb3+、Sn4+、Ti4+、Zr4+、Hf4+、Th4+、Mn4+、Nb5+、Ta5+、U(Ⅵ)及稀土离子定量沉淀,Mn2+、Fe2+、Pb2+部分沉淀,Ca2+、Sr2+、Ba2+、Mg2+、Co2+、Ag+、Cu2+、Cd2+、Ni2+、Zn2+留于溶液中。

在稀盐酸溶液中,用1-亚硝基-2-萘酚沉淀钴,是较完全的,但不能用作分离方法。因铁、铜、铋、银、铬、锆、钛、钼、钒、锡和硝酸等都有干扰。铝、铍、铅、镉、锰、镍、汞、砷、锑、锌、钙、镁和磷则不干扰。用氧化锌可以沉淀铝、钛、钒、铬、铁、砷、锆、锡、钨、铀、磷和大部分铜、铝、硅。所以用1-亚硝基-2-萘酚沉淀钴之前,常用氧化锌分离干扰元素。但用氧化锌沉淀分离干扰元素,常须沉淀二次或三次,这样就使1-亚硝基-2-萘酚沉淀钴的方法失去优越性。

铜铁试剂在酸性溶液中,定量沉淀Fe、Ti、Zr、V(Ⅴ)、U(Ⅳ)、Sn(Ⅳ)、Nb和Ta,可与Al、Cr、Mn、Ni、Co、Zn、Mg和P分离。铜铁试剂沉淀可用四氯化碳萃取除去。因铜铁试剂不影响1-亚硝基-2-萘酚沉淀钴,故铜铁试剂分离可与1-亚硝基-2-萘酚沉淀钴结合应用。

用亚硝酸钾使钴成亚硝酸钴钾沉淀,是一较实用的分离钴的方法。虽然沉淀的溶解度较大,与大量镍的分离不完全,沉淀不能作为称量形式等都是缺点,但此方法选择性较高,能使几毫克钴与大量铁、铜、镍,铝、锑、铋、镉、铬、锰、铝、钛、锡、钨、铌、钽、钒、锌和锆等元素分离。砷的干扰可预先挥发除去。钙、锶、钡、铅可以硫酸盐形式除去。KNO2沉淀法是在乙酸溶液中,钴与KNO2形成亚硝酸钴钾(K3[Co(NO2)6])沉淀,在酒石酸存在下,Ni、Cr、Al、Fe、Ti、Zr,Nb、Ta、W、Mo及硫化氢组元素不干扰,Ca、Sr、Ba、Pb干扰此法自Ni中分离的Co,可以硫酸盐形式沉淀除去。沉淀并不纯净,可能夹带有W、Ni、Fe等元素。

萃取分离钴的方法很多,但多数选择性不高。

用丙酮∶水∶盐酸=34∶4∶2(体积之比)混合溶液为展开剂,用纸色谱可使钴与铁、钛、铜、锰、锌、铬、镍、钒和铀等元素分离。此方法已应用于矿石分析。

1-亚硝基-2-萘酚萃取法是在pH=3~7介质中,钴与试剂形成橙红色配合物,用苯定量萃取,大量Fe3+用氟化物掩蔽,加入柠檬酸盐可防止其他金属离子水解。在配合物形成后,再提高酸度,Ni、Cu、Cr、Fe等配合物立即被破坏,而钴配合物仍稳定,从而提高萃取的选择性。方法可用于痕量钴的萃取分离。钴的硫氰酸盐二安替比林配合物可被MIBK定量萃取。Co(Ⅱ)-PAN的配合物也能被三氯甲烷萃取。

介质为HCl(3+1)的试液通过强碱性阴离子交换柱,Cu、Zn、Fe的氯阴离子被吸附于柱上,Ni、Mn、Cr流出。然后用HCl(1+2)洗脱钴,Cu、Zn、Fe仍留于柱上。

五、钴的测定方法

目前仍在用的测定钴的方法有容量法、极谱法、光度法、原子吸收光谱法和等离子体发射光谱法等。

矿石中钴的含量一般较低,经常应用比色法进行测定。钴的比色法很多,最常用的有亚硝基-R-盐(亚硝基红盐)和2-亚硝基-1-萘酚萃取比色法。其他有硫氰酸盐法、5-Cl-PADAB光度法和PAR比色法、过氧化氢-EDTA比色法等。

亚硝基-R-盐(亚硝基红盐)比色法的优点是在一般情况下不需分离铁、铜、镍等元素而直接进行测定;简便、快速,准确度也较高。采用差示比色,可测定高含量钴。2-亚硝基-1-萘酚法由于经过萃取,有较高的灵敏度,适用于铜镍矿中钴的测定。硫氰酸盐法由于铜和铁的干扰,需要掩蔽或分离,目前应用较少。过氧化氢-EDTA比色法是在pH=8的氨性溶液中,用过氧化氢将钴氧化至三价与EDTA生成紫红色配合物,借以比色测定高含量钴。10mg Fe,12mg Mn,5mg Cu或Ni,1gmgSO4及2g NaCl均不干扰钴的测定。

用三氯甲烷萃取钴与二安替比林甲烷-硫氰酸盐形成的三元配合物,使钴与大量铜、镍分离后,再用PAR比色法测定钴。此法灵敏度较高,适用于组成复杂的试样中或大量铜、镍存在下微克量钴的测定。

对高含量钴的测定宜采用容量法。容量法有EDTA法、电位滴定法和碘量法。EDTA法由于铜、镍、铁、铝、锌等共存离子的干扰,须用亚硝酸钴钾或其他方法将钴与干扰元素分离后再进行滴定。

1.亚硝基-R-盐(亚硝基红盐)比色法

在pH=5.5~7.0的醋酸盐缓冲溶液中,钴与亚硝基-R-盐(1-亚硝基-2萘酚-3,6-二磺酸钠)形成可溶性红色配合物。

2.电位滴定法

在氨性溶液中,加入一定量的铁氰化钾,将Co(Ⅱ)氧化为Co(Ⅲ),过量的铁氰化钾用硫酸钴溶液滴定,按电位法确定终点。其反应式如下:

岩石矿物分析

本法适用于含1.0%以上钴的测定。

3.EDTA容量法

钴与EDTA形成中等稳定的配合物(lgK=16.3)。能在pH为4~10范围内应用不同的指示剂进行钴的配位滴定。

铁、铝、锰、镍、铜、铅、锌等金属离子干扰测定,因此必须将它们除去或掩蔽。对于只含铁、铜、钴等较单纯的试样,可用氟化物掩蔽铁、硫脲掩蔽铜而直接进行测定。多金属矿则应在乙酸介质中,用亚硝酸钾沉淀钴与其他干扰元素分离后,再进行测定。

常用的滴定方法有:以PAN[1-(2-吡啶偶氮)-2-萘酚]为指示剂,用铜盐溶液回滴;以二甲酚橙为指示剂,用EDTA标准溶液滴定被钴所置换出的EDTA-锌中的锌。

使用PAN作指示剂铜盐回滴法时,所加的EDTA量可根据钴量而稍微过量,这样终点更加明显。在常温下反应较慢,应在70℃至近沸状态下进行滴定。加入有机溶剂(甲醇、异丙醇等),可使终点颜色变化敏锐。

以二甲酚橙为指示剂,不能用EDTA标准溶液直接滴定。因为铁、铝、铜、钴和镍等能封闭二甲酚橙,虽然用三乙醇胺能掩蔽痕量的铁、铝,用邻啡罗啉能抑制铜、钴对二甲酚橙的封闭作用,但还不够理想,故改用置换滴定法,以克服这一缺点。

本法适用于含0.5%以上钴的测定。

4.原子吸收光谱法

每毫升溶液中,含10mg铁,9mg镍,40mg锡,3mg银,0.8mg铝,0.64mg钒、铝、钛,0.6mg铬,6.4mg钠,0.4mg钾,0.2mg铜,0.16mg锰,0.1mg砷、锑,40μg镁,80μg锶、磷,80μg钨,50μg铅,48μg钡,40μg锌、镉、铋、钙,23μg铍均不干扰测定。二氧化硅含量超过40μg/mL干扰测定,当加入高氯酸冒烟处理后,含量达0.8mg/mL亦不干扰测定。小于15%(体积分数)硝酸,小于5%(体积分数)盐酸、硫酸不影响测定,高氯酸含量达16%(体积分数)亦不影响测定。磷酸严重干扰测定。

方法灵敏度为0.085μg/mL(1%吸收),最佳测定范围为2~10μg/mL。

本法适用于镍矿及铁矿中钴的测定。

5.碘量法

Co(Ⅱ)在含有硝酸铵的氨性溶液(pH为9~10)中能被碘氧化成Co(Ⅲ),并与碘生成稳定的硝酸-碘五氨络钴的绿色沉淀。过量的碘以淀粉作指示剂,用亚砷酸钠标准溶液滴定。其反应式如下;

岩石矿物分析

岩石矿物分析

铁、铝在氨性溶液中能生成氢氧化物沉淀且易吸附钴,同时铁的氢氧化物又影响终点的判断,加入柠檬酸铵-焦磷酸钠混合溶液可消除100mg以下铁、铝的干扰。2mg锰的影响测定,铜、镍、镉、锌在100mg以下不干扰。

本法适用于5%以上钴的测定。

6.ICP-AES法

ICP-AES法(等离子体发射光谱法)可以同时测定样品中多元素的含量。当氩气通过等离子体火炬时,经射频发生器所产生的交变电磁场使其电离、加速并与其他氩原子碰撞。这种连锁反应使更多的氩原子电离形成原子、离子、电子的粒子混合气体——等离子体。等离子体火炬可达6000~8000 K的高温。过滤或消解处理过的样品经进样器中的雾化器被雾化并由氩载气带入等离子体火炬中,气化的样品分子在等离子体火炬的高温下被原子化、电离、激发。不同元素的原子在激发或电离时发射出特征光谱,所以等离子体发射光谱可用来定性样品中存在的元素。特征光谱的强弱与样品中原子浓度有关与标准溶液进行比较,即可定量测定样品中各元素的含量。

含钴矿样经过盐酸、硝酸分解后,在选定的测量条件下以ICP-AES测定溶液中的Cu、Pb、Zn、Co、Ni等元素的含量。

本法适用于0.10%~20.00%之间钴的测定。

六、钴矿石的分析任务及其分析方法的选择

在生产实践中,因不同的钴矿产品所含杂质元素的组成不同,考虑到其对生产工艺的影响,在对钴矿样进行检验时,对杂质元素的检测也要选择合适的方法进行测定。

对于主品位钴的测定,如果样品中钴含量低于1.00%以下,一般采用光度法测定,现在通常使用的方法是亚硝基-R-盐光度法,该方法稳定可靠,样品经过处理以后可以直接进行测定。钴含量超过1.00%时,将样品适当处理以后,可以使用电位滴定法测定,该方法特别适用于含钴量比较高的矿物。

钴矿石中的常见钙、镁、铅、锌、镉、铜等元素含量低时可以采用原子吸收法进行测定,含量高时可以使用EDTA滴定法测定;高含量铜亦可用碘量法进行氧化还原滴定;铁可以用磺基水杨酸光度法或重铬酸钾容量法进行测定;铝一般用铬天青光度法测定;二氧化硅用硅钼蓝光度法测定;镍用丁二酮肟光度法测定;磷、砷可用钼蓝光度法测定。其他元素一般在矿物中含量不高,对生产的影响不大,在作为原料检测时可以酌情考虑是否需要检测。

技能训练

实战训练

1.学生实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成钴矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

二、镍钴溶液中铜和锌的去除

镍钴溶液中铜和锌的去除可以通过以下几种方法:

1.氧化还原法:在碱性条件下,将溶液中的铜氧化成氧化铜或氢氧化铜沉淀,再用硫酸或盐酸处理,将沉淀转化成铜盐或氯化铜。锌可以用均相氧化剂如双氧水氧化成氢氧化锌沉淀,最后用硫酸或盐酸处理。

2.沉淀法:利用沉淀的不同沉降速度,先沉淀铜,再沉淀锌。常用的沉淀剂有氢氧化钠和氢氧化钙。

3.活性炭吸附法:利用活性炭吸附溶液中的铜和锌,然后用酸性水解去除铜和锌。

4.电化学法:通过电解法将溶液中的铜和锌还原成金属沉淀,然后用酸性水解去除金属。

需要根据具体情况选择合适的方法进行处理。

三、关于电镀含镍废水处理

电镀废水的处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的优缺点,以及一些新材料在电镀废水处理上的应用。

01化学沉淀法

化学沉淀法是通过向废水中投入药剂,使溶解态的重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,从而达到去除重金属的目的。

化学沉淀法因为操作简单,技术成熟,成本低,可以同时去除废水中的多种重金属等优点,在电镀废水处理中得到广泛应用。

1.碱性沉淀法

碱性沉淀法是向废水中投加NaOH、石灰、碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。

但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。

2.硫化物沉淀法

硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。

但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。

3.铁氧体法

铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。

pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。

化学沉淀法的局限性

随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。

采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。

采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。

02氧化还原法

1.化学氧化法

化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。

常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。

2.化学还原法

化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。

该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。

以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。

03电化学法

电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。

该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。

电化学法主要有电凝聚法、磁电解法、内电解法等。

电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。

由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。

采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。

电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。

近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。

该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。

04膜分离技术

膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。

该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。

对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。

投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。

液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。

美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。

05离子交换法

离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。

此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。

研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。

Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。

使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。

通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见更多相关技术文档。

06蒸发浓缩法

蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。

在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。

07生物处理技术

生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。

1.生物絮凝法

生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。

生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。

生物絮凝剂可以分为以下三类:

(1)直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。

(2)利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。

(3)利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。

近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。

其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。

2.生物吸附法

生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。

可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。

研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。

吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。

壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。

通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。

用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。

3.生物化学法

生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。

从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。

R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。

4.植物修复法

植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。

该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。

李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。

可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。

08吸附法

吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。

活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。

以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),

然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。

纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。

纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。

结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。

09光催化技术

光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。

光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。

光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。

以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。

膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。

10重金属捕集剂

重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。

重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。

选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。

重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。

结语

电镀废水成分复杂,应尽量分工段处理。在选择处理方法时,应充分考虑各种方法的优缺点,加强各种水处理技术的综合应用,形成组合工艺,扬长避短。

重金属具有很大的回收价值且毒性大,在电镀废水处理过程中应多使用重金属回收利用的工艺,尽可能地减少排放。

基于化学沉淀法污泥产量大,电化学法能耗高,膜分离技术的膜组件造价高且易受污染等诸多问题,就现有电镀废水处理技术而言,应向着节能、高效、无二次污染的方向改进。

同时可与计算机技术相结合,实现智能化控制。还可结合材料学、生物学等学科,开发出更适合处理电镀废水的新型材料。

参考资料:机制砂