首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
镍钴分离 2024-09-30 18:43:20

贵金属回收提炼公司(日本贵金属回收技术)

一、贵金日本从粉煤灰提起贵金属的属回收提司日原因

您是想问日本从粉煤灰提起贵金属的原因是什么吗?日本从粉煤灰提起贵金属的原因是需求量很大。日本是本贵一个资源贫乏的国家,对于贵金属的金属技术需求量很大,但是回收国内产量非常有限。因此,贵金日本通过多种途径获取贵金属,属回收提司日其中一种就是本贵从粉煤灰中提取。粉煤灰是金属技术燃煤产生的副产品,其中富含一些贵金属,回收如银、贵金金、属回收提司日铂等,本贵经过提取和回收,金属技术可以获得较高的回收经济效益。此外,通过对粉煤灰的可持续利用,也可以降低对环境的污染和资源的浪费。

二、日本菱刈金矿床

1.地质背景

菱刈(Hishikaris)金矿床位于日本南部九州鹿儿岛县伊佐郡菱刈镇,是日本最大的金矿。该矿床为一个低硫化浅成低温热液型的高品位金矿。

菱刈矿山及其周围以老第三系四万十层群(白垩纪的砂岩和泥岩)为基底,新第三纪末至更新世的火山岩类不整合覆盖其上,山田矿区出露的岩石,主要有菱刈下部安山岩、狮子间野英安岩、般若寺熔结凝灰岩、入户火山碎屑流以及冲积物(图10-16)。四万十层群只是在山田矿床东端伏于地表下300m深处。菱刈下部安山岩类、般若寺熔结凝灰岩、入户火山碎屑流等不整合覆盖在四万十层群之上。

图10-16菱刈-山田地区地质图

(引自池永一等,1995,《贵金属地质》,第3期)

1—冲积层;2—入户火山碎屑岩;3—般若寺熔结凝灰岩;4—狮子间野英安岩;5—菱刈下部安山岩;6—矿脉

菱刈下部安山岩类是山田矿床矿体的围岩,主要由安山质火山碎屑岩和二辉安山质熔岩组成。

狮子间野英安岩广泛分布在本区东部,系发育流纹构造的灰白色角闪英安岩,局部受轻微热液变质,含少量石英脉。

般若寺熔结凝灰岩,分布在本区西北部、西南部的山田矿床地区以及南部地区,为灰白色含角闪石的玻璃质熔结凝灰岩,它在山田地区受到热液蚀变而发生粘土化。

入户火山碎屑堆积物,广泛分布在本区西半部地形较低的地区,由很少固结的白色轻质凝灰岩组成。

菱刈矿田由本矿床、山田矿床和山神矿床组成。本矿床由大泉、菱泉、端泉、芳泉等四个矿脉群组成。山神矿床由庆泉、祥泉矿脉群组成。山田矿床由友泉矿脉群组成。本矿床矿脉走向NE 45°~50°,倾角NW80°~90°,脉宽1~3m,沿走向长度最大达1100m。山田矿床矿脉走向NE 50°,倾角NW70°~90°,部分矿脉倾向南东。

在本坑-山神地区,菱刈矿床的产量与储量之和为320万t,加上周围低品位部分,金平均品位为63×10-6;山田带,储量为200万t,金平均品位为25×10-6。总计含金250t,占了全日本产金量的90%以上。

2.勘查与发现

菱刈矿床产在日本岛弧及环太平洋成矿带西部和南部的岛弧火山岩带,具有较强的代表性,其发现过程及找矿经验引起了多方面的重视。菱刈地区金的勘探工作可追溯到18世纪50年代,并一直零星进行,同时进行小规模的开采。1903年达到采矿高潮,近地表部分的三个宽约0.5~1m的石英-方解石-粘土矿脉,被菱刈-山田矿山用来开采黄金。这三条矿脉位于菱刈矿床上方大约100m位置,金的品位大约为(20~30)×10-6。

1933~1943年间,菱刈-山田矿脉进行地下开采,金品位高达130×10-6,但是由于第二次世界大战的原因,开采工作被迫削减。

1952~1968年,池田富男对山田矿床进行3次地质勘查,认为地表3条已知矿脉已被采完,应进行深部勘查。1969年布计矿山公司买得矿产权,但没有投入工作。1973年,住友金属开采有限公司的分公司取得菱刈地区的矿产开采权。之后,有关专家进行地质勘查后指出:

图10-17日本菱刈低硫化低温热液系统的重力、地面和航空电磁综合异常图

(引自E.Izawa等,1990)

1)北萨地区虽是金矿密集区,但由于多数是私人矿区,因此一直缺乏基础地质矿产调查;

2)该区大面积发育了经受矿化作用的时代较新的火山岩类和火山喷发物,具有金矿成矿的地质构造特征,如果采用最新的勘查技术搞清下部地层的地质构造,有可能找到隐伏金矿床。

1975~1976年间,根据上述专家提出的建议,进行了北萨地区380km2的地质调查和重力测量(图10-17),发现大部分已知金矿床表现出小的布格高值,这些现象是由绿磐岩化安山岩和下伏的白垩纪基底岩石的抬升盘引起的,并在菱刈地区内圈定了幅度为4mGal的东北向的高值区。

1975~1978年间,日本金属矿产勘查振兴局(现称MMAJ)对北萨地区包括住友公司拥有的地区进行了详细的勘查。在本地区开展区域地质填图和地球物理普查工作,观察到金矿脉赋存于绿磐岩化的安山质火山岩中。

在1978年,进行了电测量(施伦贝尔排列)和航空电磁测量(图10-17)。结果表明:菱刈是一个低电阻率带,这与大口市附近金矿床的情况相似。电测量剖面表明,在低电阻率带下部200m深处出现高电阻率(>100Ω·m),表明有侵入岩存在。

因为重力异常与电阻率异常的一致性,1980年,日本金属矿业事业团(MMAJ)作出决定,在菱刈-山田坑道下钻测试深部靶区。1981年初,第一个钻孔打到了第一条石英脉,发现超过15cm的脉体中金的品位为290.3×10-6,银为167×10-6。但令人惊奇的是,石英脉所赋存的岩石是白垩系页岩,而不是预期的绿磐岩化安山岩。同年后期,两个更进一步的岩心钻探结果也打到了许多金,包括在56-2号钻孔中金的品位为220.4×10-6的5.54m岩心。根据以后的研究结果了解到,钻孔所针对的电阻率低的靶标,可能是由本坑-山神矿脉上方的板状活动带所致,而不是矿脉本身蚀变。

1981~1982年的后期,住友公司进行了随后的岩心钻,8个网格上18个钻孔钻进6870m。探明沿走向700m、垂深100m延伸的含金矿脉系列。估计资源量有120t,金平均品位80×10-6。虽然本坑-山神地区直接下伏于菱刈-山田矿山,但这两个系列矿脉之间没有连续性。

1982年底,住友公司开始进行双斜井建设,并于1984年初,在100m深处达到矿头。此处,出现了大量的高温热水,要想取得更进一步的结果,必须打抽水钻。抽水工作于1984年中成功开始。1985年中期,首期对本矿床的菱泉脉进行采矿。在接下来的4年开采中,共生产出了25t以上的金。

1987~1988年间,在本坑-山神脉系西南1km处作了进一步的勘探,27个钻孔钻进11477m,圈定了山田矿脉带,而1990年9月发现了山神矿床。1991年和1992年,先后开始出矿。

1989年,本坑矿脉地下矿山的日产量为350t矿石。1994年,日产量上升到460t。矿石就地破碎,经过手选处理后,作为硅酸矿运送到四国爱媛县的东予铜冶炼厂,通过铜的冶炼产生的阳极电解液,有效地回收金。

3.小结

综上所述,菱刈矿床的发现过程有以下几点值得总结:

1)20世纪70年代以前,在菱刈山田地区开展地质工作的学者都强调,区内既缺乏系统的地表地质调查,又缺乏对深部地质情况的了解,需要加强地质调查;根据区内矿化普遍,推测其深部有隐伏盲矿体赋存的有利条件,具有找矿前景。

2)加强区域性研究和对比,才能确定找矿前景。但区域性研究和对比必须是在区域性地质调查、区域地球物理调查和区域地球化学调查的基础上进行。

3)菱刈世界级金矿床的发现是在有金开采历史的地区实施的良好计划、系统勘探项目的结果,也得益于勘查人员灵活运用多种技术手段,综合了该地区的地质和地球物理调查的结果,例如采用航空电阻率填图方法、重力和电磁法、还有普查性的钻探工作,等等。

三、日本人怎么处理废旧电池

目前世界上处理废旧电池的方法有三种:深度固化法、矿山储存法和回收利用法。

(1)热处理

在瑞士,有两家工厂专门从事旧电池的加工和利用。巴特莱克的方法是把旧电池磨碎,送到炉子里加热。这时,挥发性汞可以被提取出来。当温度较高时,锌也会蒸发。它也是一种贵金属。铁和锰的熔合成为炼钢用锰铁合金。该厂每年可加工废电池2000吨,获得铁锰合金780吨、锌合金400吨、汞3吨。

另一种植物直接从电池中提取铁,并出售金属混合物如锰氧化物、氧化锌、氧化铜和氧化镍作为金属废料。但是,热处理的方法很昂贵,瑞士也对每个电池购买者收取少量的特殊加工费。

(2)“湿处理”

马格德堡郊区正在建造一个“湿处理”装置。除铅蓄电池外,各种蓄电池都溶解在硫酸中,然后用离子树脂从溶液中提取各种金属。用这种方法得到的原材料比热处理得到的要纯净,因此市场上的价格更高,电池中所含物质95%都能被提取出来。

湿处理可以节省分拣过程(因为分拣是人工操作,会增加成本)。马格德堡年加工能力可达7500吨。虽然其成本略高于填埋法,但有价值的原材料不会被丢弃,也不会对环境造成污染。

(3)真空热处理

德国alter公司开发的真空热处理方法也很便宜。然而,首先,镍镉电池需要从废电池中分离出来。废电池在真空中加热,水银在真空中迅速蒸发,可以回收。然后,研磨剩余的原料,用磁铁提取金属铁,从剩余粉末中提取镍和锰。每吨废电池的加工成本不到1500马克(现在约6345.18元)!

扩展资料:

废旧电池的回收是指废旧电池的回收。中国最常用的工业电池是铅电池,占电池总成本的50%以上。主要方法有火法、湿法冶金法和固相电解还原法。外壳采用塑料制成,可回收利用,基本实现无二次污染。

废电池材料:

镍镉、镍氢和锂离子电池广泛应用于小型二次电池。镉镍电池中的镉是环境保护严格控制的重金属元素之一。锂离子电池中的有机电解液、镍镉和镍氢电池中的碱、铜和其他重金属作为电池制造的辅助材料,都构成了环境污染。

目前,我国小型二次电池总量只有几亿只,且大多规模较小,废旧电池利用价值相对较低。此外,它们大多用于生活垃圾处理。其回收利用存在成本和管理问题,回收利用存在一定的技术问题。

加工工艺:

由于“血铅污染事件”,国家加大了重金属污染控制和淘汰落后产能的措施,导致铅行业受到冲击,铅价下跌。作为电池产业的主体,铅电池产业增速放缓,从而影响整个产业进入缓慢发展期。

造成“血铅污染事件”的原因一方面是铅行业一些企业长期忽视污染治理,淘汰落后产能,导致生产过程中产生的铅污染物未经处理流入大气、水体和土壤,导致铅污染严重。污染;另一方面,大量废旧铅蓄电池缺乏完善的环保和无污染的处理方法,在处理过程中容易制造。铅酸的泄漏造成了严重的环境污染。

现在,一种新型的无污染铅酸蓄电池技术的出现,很可能会改变这种局面。波兰科学家开发的这种无污染铅酸电池技术,可以将湿法冶金与火法冶金相结合,将铅酸电池中的硫酸加工成洗衣粉原料。

在使用过程中,电池中的铅金属和铅膏可以在旋转炉中熔化,然后转化成粉末。铅蓄电池外壳的聚乙烯网格和聚丙烯外壳加工成颗粒,可二次使用,在整个生产过程中不会造成二次污染。这项技术不仅大大减少了对环境的污染,而且把废物变成了宝藏。产品为其他行业提供重要原材料,真正做到“一石二鸟”。

这项技术在2011年布鲁塞尔创新研究和新技术展览会上获得了一枚金牌。这项技术正在波兰推广。

废电池造成的环境污染问题越来越受到世界各国的重视。废旧电池的回收、处理和利用是一项系统工程,人们一直在寻找技术上可行、经济上可行的科学处理方法。废电池的无害化处理和综合利用对保护环境、节约资源具有重要意义。这是当代和未来的伟大成就。

参考资料来源:百度百科-废旧电池回收利用

四、如何将废电路板炼出的铜锭中提炼出贵金属

一种精炼贵金属的方法,该方法所包括的步骤为,用四分法将含有该种贵金属的矿料与已知量的某种贱金属一起冶炼成一种已知贵金属浓度的合金,然后将贱金属溶于酸中,使贵金属以固体形式分离出来.该方法以用来精炼金为佳,同时所用的酸为硝酸,其后再同盐酸进行第二次酸处理。

《废弃电器电子产品回收处理管理条例》

第一章总则

第一条为了规范废弃电器电子产品的回收处理活动,促进资源综合利用和循环经济发展,保护环境,保障人体健康,根据《中华人民共和国清洁生产促进法》和《中华人民共和国固体废物污染环境防治法》的有关规定,制定本条例。

第二条本条例所称废弃电器电子产品的处理活动,是指将废弃电器电子产品进行拆解,从中提取物质作为原材料或者燃料,用改变废弃电器电子产品物理、化学特性的方法减少已产生的废弃电器电子产品数量,减少或者消除其危害成分。

扩展资料:

设备优点:

1.采用了先进的机械粉碎、高压静电分离新工艺。粉碎、解离后,进行金属物和非金属物的分选,纯度高;

2.关键技术是将各种废旧线路板的专用粉碎解离设备有机的结合起来,在生产过程中达到较大的节能效果,且实现了很高的金属分离率;

3.处理每吨废旧线路板单位能耗仅为国内同类产品的1/2左右;单套设备的每小时处理量高达1顿以上

4.其售价仅为国内外同类设备的1/5—1/3,且铜的回收率比同类生产厂家高出3%--5%。

5.综合性能好,对电脑板,计算机板,电视机板及其它线路控制板有独特的效果。对含电容器件的各种线路板回收同样有兼融性。

6.本生产线是风选型产品的升级换代产品,比风选型耗电量减少,且无噪音,人工少自动化程序高,效率提高,同时占地面积更小,是废旧线路板回收利用到目前最理想的生产线。

参考资料来源:百度百科-线路板回收设备

参考资料:锂矿加工