首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
湿法冶金 2024-09-30 18:22:24

废金属行情查询网(晋城废金属资源回收)

一、废金废金高平市收劳保哪里收

高平市鑫成飞再生资源回收有限公司,属行属资收高平市强强诚信劳保批发部,情查根据查询企查查官网得知。询网

1、晋城高平市鑫成飞再生资源回收有限公司:位于山西省晋城市高平市南城办上韩村,废金废金主要经营生产性废旧金属、属行属资收报废电器、情查电子产品、询网废旧物资回收等。晋城

2、废金废金高平市强强诚信劳保批发部:成立于2023年1月3日,属行属资收经营范围包括劳动保护用品销售、情查家居用品销售等。询网

二、晋城煤和含煤岩系中潜在的共伴生矿产资源

———一个值得重视的问题

摘要煤是一种具有高度还原障和吸附障性能的有机岩和矿产,在特定的地质条件下,可以富集一些有益金属元素,并达到成矿的规模。综合国内外一些研究资料,论述了煤和含煤岩系中有益金属铌、镓、铼、钪的丰度、赋存状态、地质成因以及利用的可能性。煤中稀有金属元素富集或成矿的研究,是煤地球化学和矿床地球化学重要内容之一,值得进一步加强。

任德贻煤岩学和煤地球化学论文选辑

煤的微量元素组成中有一些珍贵的有益元素,有的已富集成相当规模的共伴生矿床,日益受到重视。例如,在哈萨克斯坦、吉尔吉斯斯坦和新疆伊犁、吐-哈等侏罗纪含煤盆地中,都发现了煤层顶板砂岩层及部分煤层中共生的大型铀矿床,其中有的已形成生产能力。又如,在云南临沧、内蒙古乌兰图嘎矿区和俄罗斯滨海边区所发现的中、新生代大型褐煤—锗矿床,这些矿床的主要特征见于众多文献[1~8]。

近年在煤中又陆续发现了高度富集的镓、铌、铼、钪等稀有金属元素以及稀土元素和银、金、铂族元素等贵金属元素。这些高含量的煤中微量元素,不少都是潜在的重要战略矿产资源,或者是经济上可回收利用的煤加工的副产品。加强对其勘查,深入研究其赋存状态和富集规律,有利于充分、合理利用煤炭资源及共伴生的矿产资源,发展循环经济。

本文综合文献及已知信息,仅就铌、镓、铼、钪等元素,简述如下。

一、铌(Nb)

铌是一种抗蚀性强的高熔点的稀有金属,其合金超耐热、超轻,可用作导弹、火箭和航空航天发动机的重要材料,也是重要的超导材料,是世界上需求量较多的稀有金属。地壳中铌的克拉克值为21μg/g,据Ketris和Yudovich[9],全球煤中铌的平均含量为3.7μg/g。俄罗斯学者Середин建议当煤中铌含量≥300μg/g时,可作为伴生有用矿产评价[6]。

煤中铌的异常可能是同生的,主要是与风化壳共生的煤往往富含铌,在表生带条件下,铌可与有机酸结合,如在含黄腐酸的溶液中有含铌矿物粉末,在4、5个月中可使溶液含铌达1mg/L即高出自然水中的几百倍。

其次,当煤层中有酸性火山碎屑蚀变的tonstein时,亦会与其相邻的煤中铌富集,Hower等报导美国肯塔基州东部FireClay煤层的tonstein夹矸层上下分层的煤中铌含量异常高,分别达到55~88μg/g和76~150μg/g[10]。

煤中铌的异常亦可能是受含金属热液的影响,Seredin报道[11],俄罗斯远东地区一个地堑型始新世褐煤,由于受富含铌的碳酸型热液的改造,使煤中铌含量达60μg/g。

世界上一些煤中富含铌,俄罗斯库兹涅茨煤田二叠纪煤中铌含量可达30~50μg/g,而煤灰中达180~360μg/g,米努辛斯克石炭—二叠纪煤田伊塞克斯煤产地30号煤层中铌含量为90μg/g,而煤灰中铌含量为580μg/g。波兰日塔夫煤田两层厚达90m和22m的中新世褐煤中富集铌,其煤灰中铌含量超过200μg/g[6,12,13]。

广西合山上二叠统煤中铌含量均值为50μg/g,其中柳花岭矿4下煤层1.1m厚的上分层煤中含铌126μg/g,换算成煤灰中含铌689μg/g[14]。据Dai等,贵州织金煤田上二叠统34号煤层铌含量的均值为64μg/g,大方煤田上二叠统3号煤层铌含量为80μg/g[15~17]。

Spears和Zheng[18]对英国主要煤田煤的分析表明,伊利石是煤中铌的主要载体。刘大锰等[19]对山西安太堡矿的分析,也得出了相似的结论。俄罗斯库兹涅茨煤田煤中铌主要富集在烧绿石和钽铁矿中。Palmer等[20]用六步逐级化学提取方法证实,所研究煤中66%的铌为有机态。Querol等[21]对土耳其Beypazary新近纪含硫褐煤的研究表明,煤中以有机态铌为主。由此可见,不同煤中,铌的赋存状态各不相同,因地而异。

代世峰等[22]、周义平[23]报道了中国西南地区受碱性火山灰影响的煤和碱性火山灰蚀变黏土岩夹矸(Tonstein)中高度富集Nb。碱性Tonstein不仅可以作为等时标志层,而且可以根据含煤岩系中碱性Tonstein的层数、厚度的空间分布规律,有可能寻找到古火山口的位置,对于与碱性火山岩建造有关的稀有元素找矿具有重要的意义。

二、镓(Ga)

镓是典型分散元素,是用于光纤通讯设备、电脑和彩电显示的材料。镓的克拉克值为16μg/g[24]。在自然界难以形成独立的镓矿床,而主要从铝土矿及闪锌矿矿床开采中综合回收。全球煤中的镓含量为5.8μg/g,而煤灰中镓含量的均值为33μg/g[9]。我国煤中镓含量的均值为6.5μg/g[7]。

世界上有些煤田煤中镓含量比较高,一些煤的煤灰中镓含量高达几百μg/g,因此,富镓煤的燃烧副产品具有提取镓的潜力。根据全国矿产储量委员会1987年的规定,各类含镓矿床中镓的工业利用标准:铝土矿矿石镓为20μg/g,而煤为30μg/g。

周义平和任友谅[25]的研究表明,西南地区上二叠统的煤灰中镓含量可达63.7~401.5μg/g,主要呈有机态,在<1.3g/cm3密度级的煤样的灰分中较为富集。贵州紫云轿顶山上二叠统煤中镓含量均值为375μg/g。贵州织金龙潭组底部34号煤含镓100μg/g。重庆松藻煤田11号煤层煤中镓含量为32μg/g[22]。此外,浙江长兴上二叠统若干煤,宁夏石炭井、石嘴山矿区晚古生代中镓含量亦超过30μg/g。

内蒙古准格尔煤田黑岱沟巨厚煤层6号煤是煤中镓富集的一个典型实例[26,27]。该煤层中Ga的含量均值为44.6μg/g,有的分层可达76μg/g,微区分析表明,镓的主要载体是煤中的勃姆石,部分分布在有机质中[26,27]。不仅如此,该煤中亦超常富集Al,导致该煤层的燃煤产物高度富集Al2O3,Al2O3在粉煤灰中的含量超过50%,因此,黑岱沟6号煤层是一个与煤共(伴)生的镓—铝矿床。在黑岱沟南部和北部的哈尔乌素和官板乌素煤中镓虽然富集,但尚未达到工业品位。随着近年来煤炭产量的增加,黑岱沟富镓和铝的煤炭资源量逐年递减,应引起相关部门的高度重视,以保护这块稀有的煤炭资源。另外,燃烧该区6号煤层的电厂所排放的粉煤灰经过常年的累积,形成了富Al和Ga的人工矿床,该人工矿床中Al和Ga的分布规律、赋存形态和迁移特征值得进一步深入研究。

俄罗斯米努辛斯克煤田切尔诺戈尔煤产地“两俄尺”煤层煤中含镓30μg/g,煤灰中含镓375μg/g;俄罗斯远东地区拉科夫斯克煤产地中新世含锗煤中含镓30~65μg/g,煤灰中含镓100~300μg/g。美国肯塔基州西北部石炭纪煤层“阿莫斯”的低灰煤中,煤灰中含镓140~500μg/g[28]。

Affolter(1998)研究表明,美国肯塔基州某大型电厂,原料煤灰分含镓70μg/g,炉渣含镓<22μg/g,粗粒飞灰中为67μg/g,镓相对富集在细粒飞灰中,其含量为110μg/g。Mar-don和Hower[29]研究表明,美国肯塔基州东南部燃煤电厂的各级产物中,原料煤煤灰含镓61μg/g,灰渣中为26μg/g,而电除尘器所获的飞灰中镓为169μg/g,相当富集。据方正和Gesser[30],取自加拿大、以色列和中国的煤烟尘镓的含量达100μg/g以上。

由此可见,燃煤副产品,主要是细粒飞灰,已成为世界上从矿产中综合回收镓的第三种主要来源。

三、铼(Re)

铼是具有超耐热性的稀有金属,是新一代航空航天发动机的材料,属战略性矿产资源,也是高效催化剂和制造新医疗器械的材料。铼是极度分散的元素,地壳中铼的克拉克值仅为0.6ng/g[24]。作为伴生金属利用时,要求矿产中铼的含量不低于2ng/g。哈萨克斯坦热兹卡兹干含铜砂岩型铜矿床中,铼局部达到工业品位。俄罗斯Середин[6]建议,当煤中含铼超过1μg/g时,可作为有益的伴生铼矿产资源予以评价。

根据Клер和Неханова1981年报告,乌兹别克斯坦安格连侏罗纪煤中含铼0.2~4μg/g,铼源自盆地周围母岩。据Валиев等(1993)研究,塔吉克斯坦纳扎尔-阿依洛克侏罗纪煤产地无烟煤中,低灰煤(Ad=3.2%)含铼2.1μg/g,而灰分较高的煤(Ad=17.9%)含铼3.3μg/g,这表明该地煤中既有有机态铼又有矿物态铼。

西班牙北部埃布罗盆地碳酸盐岩系中的褐煤含铼9μg/g,这种“褐煤”富含沥青质,灰分很高,其特性接近油页岩。

淋滤型铀—煤矿床的煤中往往富集铼。哈萨克斯坦下伊犁铀—煤矿床4m厚煤层的还原带上部的富铀矿带,铼含量均值为9.5μg/g;煤层的过渡带下部铼含量均值为4.2μg/g。煤作为还原障能使溶液中高铼酸盐还原并富集。

根据Юровский1968年的报告,顿涅茨煤田南普利沃尔尼扬矿长焰煤的精煤(Ad=8%)含铼4μg/g。

用高分辨ICP-MS方法测定煤中铼的含量,在我国大多数样品中未检测出铼,但在河北开滦、山东济宁、山西晋城个别煤矿太原组煤中,贵州兴仁上二叠统个别煤层中以及江西安源上三叠统个别煤样中,测出铼含量为0.106~0.39μg/g,这些值虽低于伴生矿产评价所需的值,但已高出铼的克拉克值百余倍到几百倍,相对富集,值得今后进一步关注。新疆早、中侏罗世的淋滤型铀-煤矿床煤中的铼应引起重视。

四、钪(Sc)

钪是一种超耐热制造轻质合金的稀有金属,价格昂贵,目前主要从提炼钨、钛、铀等金属的废渣(钪含量为80~100μg/g)中提取,出率相当低。Середин提出,当煤灰中钪的含量超过100μg/g时,可作为有益的燃煤副产品予以评价[6]。据Ketris和Yudovich的报道,全球煤中钪含量均值为3.9μg/g,而且煤灰中钪含量均值为23μg/g[9]。

近年研究表明,有些煤产地煤灰中钪含量相当高。俄罗斯库兹涅茨煤田的切尔尼戈夫露天矿、卡尔坦露天矿和南吉尔盖依矿的个别煤层煤灰中含钪100~200μg/g[31]。Юровский对煤进行重液分离后发现库兹涅茨煤田切尔诺戈尔煤产地低密度的精煤中含钪量400μg/g,因此在选煤阶段可提取富集钪的精煤。俄罗斯米努辛斯克煤田一些煤层的煤灰中含钪95~175μg/g,在低密度级的煤中钪含量达到400μg/g。俄罗斯坎斯克—阿钦斯克侏罗纪煤田别廖佐夫煤产地1号煤层的上分层煤含钪230μg/g,其灰中钪含量则达870μg/g[32]。

美国肯塔基州西北部阿莫斯煤层很薄(<0.5m),在其底部8.2cm厚的分层中,煤灰中钪含量达560μg/g[28]。

广西合山上二叠统煤田中钪含量均值较高,为42.2μg/g,而在其溯河矿4号煤层中部煤灰的钪含量达221μg/g[14]。

煤中其他含量异常高的元素并有可能回收的副产品还有V、Sb、Cs、Mo、W、Be、Ta、REEs、Zr、Hf等。

煤中共伴生有益矿产资源的勘查与评价很有意义。在煤炭资源勘查中如缺失此项工作,很难弥补。在从事此项工作时,需要注意以下事项。

(1)优选最佳的有益元素测试方法,以确保测试成果的可靠性。

(2)由于煤中共伴生有益元素往往富集在煤层的局部层位和特定的空间,因此要注意合理布置采样点,以掌握其富集成矿的规律。

(3)煤中有益金属元素的利用最佳途径是从粉煤灰中进行提取。因此,研究有益元素在煤炭燃烧及其他加工利用过程中的习性,及有益元素在煤副产品中的富集程度及其回收的可能性是非常重要的。

(4)煤中共伴生有益矿产往往是多金属的,除有益元素外,往往又有潜在有害元素,因此,必须进行全面的技术经济和环境评估,以保障开发中尽量减少潜在有害元素的对环境和人体健康的影响。

参考文献

[1]庄汉平,卢家烂,傅家谟等.临沧超大型锗矿床锗赋存状态研究.中国科学( D辑),1998,28(增刊): 37~ 42

[2] Hu RZ,Bi XW,Su WC et al. Ge rich hydrothermal solution and abnormal enrichment of Ge in coal. Chinese Science Bulletin,1999,44( Sup.): 257~ 258

[3]戚华文,胡瑞忠,苏文超等.陆相热水沉积成因硅质岩与超大型锗矿床的成因-以临沧锗矿床为例.中国科学( D辑),2003,33( 3): 236~246

[4] Zhuang XG,Querol X,Alastuey A et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field,Inner Mongolia,Northeastern China. International Journal of Coal Geology,2006,66:119~ 136

[5]黄文辉,孙磊,马延英等.内蒙古自治区胜利煤田锗矿地质及分布规律.煤炭学报,2007,32( 11): 1147~ 1151

[6]СерединВВ.Металлоносностъуглей:условияформированияиперспективыосвоения.В:УгольнаябазаРоссии,Т VI.Москва:Геоинформмарк,2004.С 453~ 519

[7]任徳贻,赵峰华,代世峰等.煤的微量元素地球化学.北京:科学出版社,2006: 351~ 366

[8] Du G,Zhuang XG,Querol X,et al. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coali- field,Inner Mongolia,northeastern China. International Journal of Coal Geology,2009,78( 1): 16~ 26

[9] Ketris M P,Yudorich Ya E. Estimations of Clarkes for Carbonaceous biolithes: world average for trace elements contents in black shales and coals. International Journal of Coal Geology,2009,78( 2): 135~ 148

[10] Hower J C,Ruppert L F,Eble C F. Lanthanide,yttrium,and zironium anomalies in the fire clay coal bed,Eastern Kentucky. International Journal of Coal Geology,1999,39,141~ 153

[11] Seredin V V. The first data on abnormal niobium content in Russian coals. Doklady Akademii Nauk,Rossii,1994,335,634~ 636

[12] Seredin V Y,Finkelman R B. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology,2008,76: 255~ 289

[13]ЮдовичЯЭ,КетрисМП.Данныеэлементы-примесивуглях.Екатеринбург:УральскоеотделениеРоссийскойАкадемииНаук,2006,1~ 538

[14] Zeng R,Zhuang X,Koukouzas N et al. Characterization of trace elements in sulfur-rich Late Permian coals in the Heshan coalfield,Guangxi,South China. International Journal of Coal Geology,2005,61: 87~ 95

[15] Dai S,Ren D,Hou X,Shao L. Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology,2003,55: 117~ 138

[16] Dai S,Ren D,Tang Y,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou province,China. International Journal of Coal Geology,2005,61: 119~ 137

[17] Dai S,Chou C-L,Yue M et al. Mineralogy and geochemistry of a Late Permian coal in the Dafang coalfield,Guizhou, China: influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology,2005,61: 241~ 258

[18] Spears DA,Zheng Y. Geochemistry and origin of elements in some UK coals. International Journal of Coal Geology,1999,38: 161~ 179

[19] Liu DM,Yang Q,Tang DZ et al. Geochemistry of sulfur and elements in coals from the Antaibao surface mine,Ping- shuo,Shanxi Province,China. International Journal of Coal Geology,2001,46: 51~ 64

[20] Palmer C A,Krasnow M R,Finkelman R B et al. An evaluation of leaching to determine modes of occurrence of select- ed toxic elements in coal. J Coal Qual,1993,12: 135~ 141

[21] Querol X,Fernández-Turiel J L,López-Soler A. Trace elements in coal and their behavior during combustion in a large power station. Fuel,1995,74( 3): 331~ 343

[22]代世峰,周义平,任德贻等.重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因.中国科学 D辑:地球科学,2007,37( 3): 353~362

[23]周义平.中国西南龙潭早期碱性火山灰蚀变的 TONSTEINS.煤田地质与勘探,1999,27( 6): 5~ 9

[24] Rudnick R L,Gao S. Composition of the continental crust//Rudnick RL. The Crust Treatise on geochemistry. Amster- dam: Elsevier; 2004: 1~ 64

[25]周义平,任友谅.西南晚二叠世煤田煤中镓的分布和煤层氧化带内镓的地球化学特征.地质论评,1982,28( 1):47~ 59

[26]代世峰,任德贻,李生盛.内蒙古准格尔超大型镓矿床的发现.科学通报,2006,51( 2): 177~ 185

[27] Dai S,Ren D,Chou C L et al. Mineralogy and geochemistry of the No. 6 coal( Pennsylvanian) in the Junger Coalfield,Ordos Basin,China. International Journal of Coal Geology,2006,66: 253~ 270

[28] Hower J C,Ruppert L F,Williams D A. Controls on boron and germanium distribution in the low-sulfur Amos coal bed,Western Kentucky coalfield,USA. International Journal of Coal Geology,2002,53: 27~ 42

[29] Mardon S M,Hower J C. Impact of coal properties on coal combustion byproduct quality: examples from a Kentucky power plant. International Journal of Coal Geology,2004,59: 153~ 169

[30]方正,Gesser H.煤烟尘中镓的酸浸及一种泡沫海绵的提取.中南矿冶学院学报,1994,25( 6): 762~ 766

[31] Nifantov B F. Valuable and toxic elements in coals. Coal Resources of Russia,Geoinformmark: Moscow,2003: 77~ 91

[32] Arbuzov S I,Ershov VV,Rikhvanov LP,et al. Rare-metal Potential of Coals in the Minusa Basin. Siberian Division, Russ. Acad. Sci.,Novosibirsk. 2003: 347

Potential Coexisting and Associated Mineral Resources in Coal and Coal-bearing Strata———An Issue Should Pay Close Attention to

Ren Deyi,Dai Shifeng

( Key State Laboratory of Coal Resources and Safety Mining,CUMT( Beijing),Beijing 100083;

School of Earth Science and Surveying and Mapping Engineering,CUMT( Beijing),Beijing 100083)

Abstract: Coal is a kind of organolite and mineral deposit with high reducing barrier and absorbing barrier performances,under specific geological conditions,it can enrich some useful metal elements and amount to the ore-forming scale. Integrated some literatures both home and abroad,w e have discussed abundance,hosting state,geologic genesis and possibility of utiliza- tion of useful metals such as niobium,gallium,rhenium and scandium in coal and coal-bearing strata. The research of rare metal elements enrichment or ore-forming is one of major subjects in coal geochemistry and ore deposit geochemistry,and thus w orthw hile to be further strength- ened.

Key words: coal; coal-bearing strata; rare metal; coexisting and associated ore deposits

(本文由任德贻、代世峰合著,原载《中国煤炭地质》,2009年第 21卷第 10期)

三、煤矿详细资料大全

是人类在富含煤炭的矿区开采煤炭资源的区域,一般分为井工煤矿和露天煤矿。当煤层离地表远时,一般选择向地下开掘巷道采掘煤炭,此为井工煤矿。当煤层距地表的距离很近时,一般选择直接剥离地表土层挖掘煤炭,此为露天煤矿。我国绝大部分煤矿属于井工煤矿。煤矿范围包括地上地下以及相关设施的很大区域。煤矿是人类在开掘富含有煤炭的地质层时所挖掘的合理空间,通常包括巷道、井硐和采掘面等等。煤是最主要的固体燃料,是可燃性有机岩的一种。它是由一定地质年代生长的繁茂植物,在适宜的地质环境中,逐渐堆积成厚层,并埋没在水底或泥沙中,经过漫长地质年代的天然煤化作用而形成的。在世界上各地质时期中,以石炭纪、二叠纪、侏罗纪和第三纪的地层中产煤最多,是重要的成煤时代。煤的含碳量一般为46~97%,呈褐色至黑色,具有暗淡至金属光泽。根据煤化程度的不同,煤可分为泥炭、褐煤、烟煤和无烟煤四类。

2018年,山西化解煤炭过剩产能关闭退出煤矿36座,退出产能2330万吨/年。

基本介绍中文名:煤矿外文名:coal煤矿的分类:褐煤、烟煤、无烟煤、半无烟煤元素组成:碳、氢、氧、氮、硫和磷等主要用途:冶金、化学工业开采历史,煤矿综述,煤矿类型,露天开采,地下开采,煤炭生产,采煤方法,壁式采煤,柱式采煤,保水采煤,其他采法,六大系统,煤矿事故,顶板事故,气体粉尘,气体喷出,坑内火灾,水灾,健康影响,环境影响,地面水下跌,错动下沉,水污染,占地及污染,植被破坏,二次扬尘,煤矿分布,开采历史早在新石器时代,人类便有使用煤的记录。煤炭的主要用途是作为燃料。美国最早的商业煤矿位于维吉尼亚州的 Midlothian,1748年开始开采。煤炭成为18世纪工业革命中的主要能量来源,蒸汽火车、蒸汽船等开始成为工业国家中的主要交通运输工具。同时炼钢业也需要大量的煤矿。城市的照明、暖气和烹调等也需要使用煤气。英国在18世纪末发明了许多地下采煤的科技,从此采煤进入了大规模商业开采的时代。挖煤的机器约在1880年代左右发明;在那之前,采矿需要以人工用铲子或十字镐挖掘。到了1912年,蒸汽挖土机科技方面的进步使得露天开采变得可能。轨道上的搬运机车,1920年煤炭在18世纪至1950年代是西方国家的主要工业和运输能量来源。另一方面,石油的开采技术在20世纪初得到很大的发展,在美国、中东和印尼发现了大规模油田。石油作为燃料的优点多于煤炭。石油及其附属品在1950年代以后开始成为主要的燃料,很快的蒸汽机被内燃机所取代。至20世纪末,煤炭在家庭、工业和运输上很大的一部分被石油、天然气、核能或可再生能源等所取代。自1890年开始,采煤也开始成为政治和社会上的争议来源。使用童工、剥削矿工、恶劣的工作环境等使得工会开始形成,社会主义思想开始兴起。另外,机器的大量使用也造成许多矿工失业,造成许多社会问题。环境标准的限制、西部大规模露天矿场的开采等,使得美国的地下采煤业在1970年代后急剧衰退。1914年最盛期时,美国有18万名无烟煤矿工,到1970年只剩6千名。沥青的工作从1923年70.5万人的巅峰,下降到1970年的14万人及2003年的7万人。矿工联合会(UMW)的活跃会员也由1980年的16万人减少到2005年的1.6万人。1973年与1979年的两次石油危机使得各国***开始寻找替代能源。在开发核能、风力、太阳能等新能源的同时,煤炭的重要性也再度受到重视。 1968年美国西维吉尼亚州的Farmington矿难不过,自1970年代开始,环保意识抬头,人们开始注意包括景观破坏、空气污染与其他燃烧煤炭所可能产生的问题等。和其他化石燃料比较,燃烧煤炭比石油或天然气产生更多的二氧化碳、二氧化硫及氧化亚氮等温室气体,并可能是造成全球暖化及酸雨等问题的主要原因之一。煤炭仍是重要的能源,因为其经济的价格和丰富的储藏量,特别是用于发电。煤炭在中国是最重要的能源,2005年中国约有80%的能源来自于燃煤。2007年中国首度成为了煤炭进口国。根据有关部门统计,截至2015年底,全国煤矿总规模为57亿吨。在57亿吨的产能规模中,正常生产及改造的煤矿39亿吨,停产煤矿3.08亿吨,新建改扩建煤矿14.96亿吨,其中约8亿吨属于未经核准的违规项目。 2018年12月,山西省钢铁煤炭行业化解过剩产能实现脱困发展领导小组综合办公室发布公告,2018年山西化解煤炭过剩产能关闭退出煤矿36座,退出产能2330万吨/年。 2019年3月,中国煤炭工业协会发布《2018煤炭行业发展年度报告》。据了解,2018年底,全国煤矿数量减少到5800处左右,平均产能提高到92万吨/年左右。其中,年产120万吨及以上的大型煤矿1200余处,产量比重提高到80%以上。煤矿综述煤矿是人类在开掘富含有煤炭的地质层时所挖掘的合理空间,通常包括巷道、井硐和采掘面等等。煤是最主要的固体燃料,是可燃性有机岩的一种。它是由一定地质年代生长的繁茂植物,在适宜的地质环境中,逐渐堆积成厚层,并埋没在水底或泥沙中,经过漫长地质年代的天然煤化作用而形成的。在世界上各地质时期中,以石炭纪、二叠纪、侏罗纪和第三纪的地层中产煤最多,是重要的成煤时代。煤的含碳量一般为46~97%,呈褐色至黑色,具有暗淡至金属光泽。根据煤化程度的不同,煤可分为泥炭、褐煤、烟煤和无烟煤四类。美国怀俄明州的露天开采煤矿在中国煤炭开采必须依法开采,证照齐全有效。贯彻“安全第一、预防为主、综合治理”的安全生产方针。煤矿类型露天开采当煤层接近地表时,使用露天开采的方式较为经济。煤层上方的土称为表土。在尚未开发的表土带中埋设炸药,接着使用挖泥机、挖土机、卡车等设备移除表土。这些表土则被填入之前已开采的矿坑中。表土移除后,煤层将会暴露出来;这时将煤块钻碎或炸碎,使用卡车将煤炭运往选煤厂做进一步处理。露天开采的方式可比地下开采的方式获得较大比率的煤矿,因为较多的矿区被利用。露天开采煤矿可以覆盖数平方公里的面积。世界约40%的煤矿生产使用露天开采方式。露天开采地下开采大部分煤层均远离地表,因此无法使用露天开采的方式。地下开采占世界煤矿生产的60%。在矿坑,通常使用房柱法在煤层中推进,梁柱用来支持矿坑。共有四种主要的地下开采法:地下开采长壁开采–长约300米以上的采掘面。一台精密的采煤机在煤层巷道中左右移动。松动的煤炭掉入刮板输送机中,并移出工作面。连续开采–利用一台有碳化钨钻头的机器从煤层中刮下煤炭。在“房柱法"系统中操作–在一系列约10米的房间区域中工作。爆破开采–传统的开采方式。使用炸药打碎煤层,将煤块收集放在矿车或运输带中。短壁开采–使用连续开采的机器。类似长壁开采有着可移动的坑顶支撑。煤炭生产煤矿在超过50个国家中商业开采。世界一年(2006年估计)约生产53亿7000万公吨的硬煤。世界上大部分国家都有煤矿储藏。以生产量与消费量比值,已探明的煤矿储藏量估计可再使用147年。综采机采煤方法采煤方法种类很多,世界主要产煤国家使用的采煤方法,总的划分为壁式和柱式两大类。这两种不同类型的采煤方法,无论从采煤系统,还是回采工艺都有很大的区别。根据不同的矿山地质及技术条件,可有不同的采煤系统与采煤工艺相配合,从而构成多种多样的采煤方法。如在不同的地质及技术条件下,可以采用长壁采煤法、柱式采煤法或其他采煤法,而长壁与柱式采煤法在采煤系统与采煤工艺方面差别很大。由此可以认为:采煤方法就是采煤工艺和回采巷道布置两部分组成。壁式采煤壁式采煤法的特点是煤壁较长、工作面的两端巷道分别作为入风和回风、运煤和运料用,采出的煤炭平行于煤壁方向运出工作面,我国多采用壁式采煤法开采煤层。壁式采煤法柱式采煤柱式采煤法的特点是煤壁短呈方柱形,同时开采的工作面数较多,采出的煤炭垂直于工作面方向运出。保水采煤以保水采煤理念绘制了我国第一幅控制生态水位采煤方法规划图,也将成为我国今后指导西北缺水区实现煤炭开采与生态环境协调发展的重要科学依据。其他采法 1、走向长壁采煤法,长壁工作面沿走向推进的采煤方法。 2、倾斜长壁采煤法,长壁工作面沿倾斜推进的采煤方法。 3、倾斜分层采煤法,厚煤层沿倾斜面划分分层的采煤方法。 4、长壁放顶煤采煤法,开采6米以上缓斜后缓斜厚煤层时,先采出煤层底部长壁工作面的煤,随即放采上部顶煤的采煤方法。 5、掩护支架采煤法。在急斜煤层,沿走向布置采煤工作面,用掩护支架将采空区和工作空间隔开,向俯斜推进的采煤方法。 6、伪倾斜柔性掩护支架采煤法。在急斜煤层中,伪倾斜布置采煤工作面,用柔性掩护支架将采空区和工作空间隔开沿走向推进的采煤方法。 7、倒台阶采煤方法。在急斜煤层的阶段或区段内,布置下部超前的台阶形工作面,并沿走向推进的采煤方法。 8、正台阶采煤法。在急斜煤层的阶段或区段内,沿伪斜方向布置成上部超前的台阶形工作面,并沿走向推进的采煤方法。 9、水平分层采煤法。急斜厚煤层沿水平面划分分层的采煤方法。 10、斜切分层采煤法。急斜厚煤层中沿与水平面成25度至30度的斜面划分分层的采煤方法。 11、房柱式采煤法沿巷道每隔一定距离先采煤房直至边界,再后退采出煤房之间煤柱的采煤方法。 12、房式采煤法。沿巷道每隔一定距离开采煤房,在煤房之间保留煤柱以支撑顶板的采煤方法。 13、仓储采煤法。急斜煤层中将落采的煤暂存于已采空间中,待仓房内的煤体采完后,再依次放出存煤的采煤方法。六大系统采煤系统,掘进系统,机电系统,运输系统,通风系统,排水系统,简称“采掘机运通”+排水系统。另外,我国将在全国煤矿建立完善监测监控、人员定位、紧急避险、压风自救、供水施救和通信联络等井下安全避险六大系统煤矿事故顶板事故顶板灾害是煤矿最常见、最容易发生的事故。在煤矿五大灾害(煤尘、水、火、瓦斯、顶板)中,无论是发生次数,还是死亡人数,顶板事故都居煤矿各类事故之首。随着工作面的开采,煤层上面的顶板岩层失去了支撑,原来的压力平衡遭到破坏,煤层顶板在上覆岩层压力的作用下,发生变形、破坏。如果我们支护不及时或支护强度不够,很容易使工作面的顶板岩层发生断裂和冒落,造成人员伤亡和财产及设备的损失,这就是我们所说的冒顶事故。气体粉尘煤层中经常伴随瓦斯(甲烷等)的存在。瓦斯容易引起爆炸事故。因此在封闭的空间工作时,需要经常监测瓦斯浓度。若气体中有一定浓度的粉尘,也有可能因为火星引起爆炸。粉尘体积细小,但表面的相对比例大。若周围空气中有充足的氧,对于燃烧反应便会非常敏感。空气污染被认为和大量燃煤有关气体喷出瓦斯本身对人体无害,但有时伴随着一氧化碳等有毒气体。若大量的瓦斯一次喷出,通常煤气爆炸的可能性也迅速增加。坑内火灾煤矿事故中最坏的情况。与一般的火灾不同,周围有许多可燃物(煤)大量存在。若坑道被热及烟堵住出口,同时发生缺氧的情况,通常会造成重大的伤亡。水灾在水底(海底、湖泊或水库附近)的矿区坍塌时发生的事故,是比坑内火灾更糟糕的情况,几乎没有生还的可能。大量洪水在很快的时间内将坑道吞没,造成全体工作人员死亡。通常生还者无法救援、遗体无法回收,坑道也同样被放弃。在承压水上采煤和小煤窑破坏区复采,也有可能发生突水、透水事故。井下突水和小煤窑透水事故远多于水体下采煤透水事故。煤矿事故频发,主要与瓦斯治理不好有关,气囊式快速密闭是唐山开滦煤矿安全专家刘炽纶的专利技术,对于巷道通风、防止瓦斯爆炸、防止火灾有很大作用。健康影响慢性肺部疾病,如尘肺病曾经在矿工中非常普遍,导致预期寿命减少。在一些采矿国家,尘肺病仍非常普遍;在美国一年约有4,000个黑肺病例(其中约1,500人为前矿工),中国则每年约有10,000个新病例。环境影响采煤对环境造成多种冲击。露天煤矿让土地无法再使用。洗煤厂所产生的酸性矿山排水可能渗入河流中,造成生态污染或人体健康的不良影响。煤炭开采带来的环境污染和生态破坏问题日益突出,主要表现:地面水下跌由于在煤炭开采过程中矿井水大量外排,导致地下水位下降,引起地面水下跌。错动下沉由于煤矿井下水大量外抽,矿井上底承载能力下降,加上大部分小窑煤井在开采过程中,没有采取预留煤柱等预防措施,有的小窑煤井甚至对国有煤矿预留煤柱肆意采挖、破坏,导致地层错动,地表下沉。水污染矿井废水中悬浮物等污染物浓度较高,特别是流经含硫铁矿煤层的矿井水,酸性很大。据南坑镇水仔边一带矿区的矿井废水抽样检测,其悬浮物浓度平均值为280毫克/升,化学耗氧量浓度平均值为530毫克/升,硫酸根离子浓度高达2500毫克/升,最低PH值仅为2.7。这类矿井废水如不经处理就外排,将严重污染地面水体,淤塞河道和农田渠道,造成土壤板结,对农作物影响很大。占地及污染煤矿排出的煤矸石一般都就近堆放。随着堆存量的不断增加,堆场的占地面积也逐年扩大。煤矸石经风化、雨蚀、自燃后,其表面的风化层物质在风力作用下进人大气,严重污染大气环境。植被破坏煤炭开采需要大量木材,按万吨煤炭产量平均消耗坑木150立方米计算。全市仅煤炭开采业一年就需消耗木材约10万立方米,如此大的木材缺口迫使煤矿多渠道收购木材,客观上助长了乱砍滥伐,使育伐比例失调。同时,由于地下水位下降,地表含水层含水量减少,也使植被生长受到影响。二次扬尘煤炭有相当一部分靠汽车运输,撒漏现象非常严重,大量煤炭流失,使街道煤尘飞扬为有效防治煤炭开采过程中产生的环境污染和生态破坏,使煤矿矿区的生态环境逐步步入良性循环的发展轨道,提出以下对策建议:一、加强矿井废水和区域环境综合治理(一)对现有废水治理设施进行改造。对已老化、坏损的废水治理设施、设备进行修复、改造,确保矿井废水长期、稳定达标排放。(二)对部分废弃矿井外排的废水进行治理。部分煤矿虽然停止了采煤,但仍有矿井废水(俗称老窿水)外排。主要是部分煤矿的采煤巷道间接相通,矿井废水全部从标高最低的井口外排,并将原有老巷道岩石断层和风化层中硫铁矿中的铁离子等浸取出来,导致废水中铁离子和硫酸根离子的浓度很高,严重污染水体环境。所以,对部分废弃矿井外排的废水必须进行治理,修建沉淀池,井投加石灰等药剂,经中和、反应、沉淀处理后,再达标外排。(三)对部分环境污染和生态破坏严重的区域进行综合治理。一是对淤塞的河道进行清淤疏浚、护岸;二是做好水保工程,一般应在矿区地面径流汇入点建设污水沉淀处理池等。二、搞好煤矸石的综合利用我市综合利用煤矸石的主要途径是发电和制砖,年利用量约65万吨,但与堆存量相比,可以说利用量很小,且利用途径单一。必须努力探索综合利用煤矸石的新途径,以尽可能短的时限内“消灭”煤矸石山。可采取的措施是:(一)提高煤矸石发电的综合利用量;(二)利用煤矸石代替粘土制砖;(三)利用煤矸石回填处置:1、煤矸石回填采矿区;2、煤矸石做工程填筑材料。三、做好矿区植被恢复和矸石堆场的覆土植被工作(一)实施封山育林,采取植草、人工造林和疏林补方式,提高地表涵养水源、保持水土的能力。(二)对短期内暂无法消化的煤矸石,制定切实可行被保护规划、方案和措施。宜林则林,宜草则草,努好煤矸石堆场的覆土植被保护工作。美国宾夕法尼亚州的森特勒利亚(Centralia)的地下矿坑火灾自1962年以来持续焚烧超过40年,造成地下水蒸发,地层下陷。由于矿脉延伸了整个城镇,使得地面经常出现裂缝冒出火苗。当地人口亦从极盛时期的2000人减少到2007年的9人。综上所述,自然资源的开发利用是社会经济发展的物质基础。煤炭资源是一种有限的、非再生的自然矿产资源,随开采利用而逐渐减少,直至耗竭殆尽,从长远看是不能持续利用的。不可再生的矿产资源的开发利用可持续发展观应该是既要注重资源利用率你,达到资源最佳化配置,不能以造成资源的大量破坏为代价来实现矿产资源的开发;又要注重资源开发利用过程中的经济效益、社会效益及生态环境效益,处理好房前发展与未来发展的关系,走资源开发、环境协调、持续发展的道路。煤矿分布山西省:大同、阳泉、太原、吕梁、长治、晋城、忻州、朔州、临汾黑龙江省:双鸭山、鸡西、鹤岗、七台河、密山山东省:济宁、枣庄、泰安、龙口、菏泽内蒙古:鄂尔多斯、乌海、呼伦贝尔、锡林郭勒、阿拉善盟陕西省:榆林、铜川、神木辽宁省:阜新、抚顺、调兵山宁夏回族自治区:宁东江苏省:徐州四川省:攀枝花贵州省:六盘水安徽省:淮北、淮南、蒙城、涡阳河南省:平顶山郑州、焦作、许昌、三门峡、永城河北省:开滦、峰峰、井陉、邯郸、张家口新疆维吾尔自治区:准东、吐哈、库拜、伊犁甘肃省:窑街、靖远、华亭云南省:曲靖、昭通、文山、保山、开远、丽江

参考资料:电池黑粉回收