首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
金属回收 2024-09-30 18:20:23

铁钴镍熔点比较(钴镍分离因素分析)

一、铁钴任务贵金属分析方法的镍熔镍分选择

任务描述

贵金属元素由于其性质的特殊性,在样品溶解、点比分离富集等方面与一般元素有很大的较钴不同之处。通过本次任务的离因学习,加深对贵金属元素性质的素分了解,能根据矿石的铁钴特性、分析项目的镍熔镍分要求及干扰元素的分离等情况正确选择分离和富集方法,学会基于被测试样中贵金属元素含量的点比高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。较钴

任务分析

一、离因贵金属在地壳中的素分分布、赋存状态及其矿石的铁钴分类

贵金属元素是指金、银和铂族(铑、镍熔镍分钌、点比钯、锇、铱、铂)共8种元素,在元素周期表中位于第五、六周期的第Ⅷ族和第IB副族中。由于镧系收缩使得第二过渡元素(钌、铑、钯、银)与第三过渡元素(锇、铱、铂、金)的化学性质相差很小,因此贵金属元素的化学性质十分相近。

铂族元按其密度不同,分为轻重两族。钌、铑、钯为轻族;锇、铱、铂为重族。

金在自然界大都以自然金形式存在,也能和银、铜和铂族元素形成天然合金。根据最新研究成果,金的地壳丰度值仅为1 ng/g。金矿床中伴生的有用矿产很多。在脉金矿或其他原生金矿床中,常伴生有银、铜、铅、锌、锑、铋和钇等;在砂金矿床中,常伴生有金红石、钛铁矿、白钨矿、独居石和刚玉等矿物。此外,在有色金属矿床中,也常常伴生金。金的边界品位一般为1 g/t。一般自然金里的金含量大于80%,还有少量的铜、铋、银、铂、锑等元素。

银在地壳中的平均含量为1×10-7,在自然界多以硫化物形式存在,单独存在的辉银矿(Ag2S)很少遇见,而且主要伴生在铜矿、铅锌矿、铜铅锌矿等多金属硫化物矿床和金矿床中。在开采和提炼铜、铅、锌、镍和金主要组分时,可顺便回收银。一般含银品位达到5~10 g/t即有工业价值。

铂族元素在自然界分布量很低,铂在地壳中的平均丰度仅为5×10-9,钯为5×10-8。它们和铁、钴、镍在周期表上同属第Ⅷ族,因此也与铁、钴、镍一样,具有亲硫性。铂族元素常与铁元素共生,它们主要富集在与超基性岩和基性岩有关的铜镍矿床、铬铁矿床和砂矿床内。铜镍矿床中所含铂族元素以铂、钯为主,其次是铑、钌、锇、铱。铬铁矿中所含铂族元素以锇、钌、铱为主。铂族元素之间,以及它们与铁、钴、镍、铜、金、银、汞、锡、铅等元素之间能构成金属互化物。在自然界存在自然铂和自然钯。自然铂含铂量为84%~98%,其余为铁,及少量钯、铱、镍、铜等。自然钯含钯量为86.2%~100%,同时含有少量铂、铱、铑等。自然钌很少见,我国广东省发现的自然钌中含有91.1%~100%的钌。铂族元素还可以与非金属性较强的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、锑、铋等组成不同类型的化合物。目前已知的铂族元素矿物有120多种。在一些普通金属矿物(如黄铜矿、磁黄铁矿、镍黄铁矿、黄铁矿、铬铁矿等)以及普通非金属矿物(如橄榄石、蛇纹石、透辉石等)中也可能含有微量铂族元素。

铂族元素的共同特性是具有优良的抗腐蚀性、稳定的热电性、高的抗电火花蚀耗性、高温抗氧化性能以及良好催化作用,故在工业上应用很广泛,特别是在国防、化工、石油精炼、电子工业上不可缺少的重要原料。

二、贵金属的分析化学性质

(一)化学性质

1.金

金具有很高的化学稳定性,即使在高温条件下也不与氧发生化学作用,这大概就是在自然界中能够以自然金甚至是以微小金颗粒存在的重要原因。金与单一的盐酸、硫酸、硝酸和强碱均不发生化学反应。金能够溶解在盐酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用于分析化学中的金标准溶液通常就是以王水溶解纯金来制备,但需要用盐酸反复蒸发除去多余的硝酸或氮氧化合物。在有氧化剂存在的盐酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能够很好被溶解,这主要是由于盐酸与氧化剂相互作用产生新生态的氯气同金发生反应所致。

2.银

银有较高的化学稳定性,常温下不与氧发生化学作用,在自然界同样能够以元素形态存在。当与其他元素发生化学反应时,通常形成正一价的银化合物。在某些条件下也可生成正二价化合物,例如AgO和AgF2,但这些化合物不稳定。

金属银易溶于硝酸生成硝酸银,也易溶于热的浓硫酸生成硫酸银,而不溶于冷的稀硫酸中。银在盐酸和王水中并不会很快溶解,原因在于初始反应生成的Ag-以AgCl沉淀沉积在金属表面而形成一层灰黑色的保护膜,阻止了银的进一步溶解。但是如果在浓盐酸中加入少量的硝酸,银的溶解是比较快的。这是因为形成的 AgCl又生成可溶性的[AgCl2]-配离子。这一反应对含银的贵金属合金材料试样的溶解是很有用的。银与硫接触时,会生成黑色硫化银;与游离卤作用生成相应的卤化物。银饰品在空气中长久放置或佩戴后失去光泽常常与其表面上硫化物及其氯化物的形成有关。在有氧存在时,银溶解于碱金属氰化物而生成[Ag(CN)2]-配离子。银在氧化剂参与下,如有Fe3+时也能溶于酸性硫脲溶液而形成复盐。

3.铂族金属

铂族金属在常温条件下是十分稳定的,不被空气腐蚀,也不易与单一酸、碱和很多活泼的非金属元素反应。但是在确定的条件下,它们可溶于酸,并同碱、氧和氯气相互作用。铂族金属的反应活性在很大程度上依赖于它们的分散性以及同其他元素,即合金化的元素形成中间金属化合物的能力。

就溶解能力而言,铂族金属粉末较海绵状的易于溶解,而块状金属的溶解是非常缓慢的。与无机酸的反应,除钯外,铂族金属既不溶于盐酸也不溶于硝酸。钯与硝酸反应生成Pd(NO3)2。海绵锇粉与浓硝酸在加热条件下反应生成易挥发的OsO4。钯、海绵铑与浓硫酸反应,生成相应的PdSO4、Rh2(SO4)3。锇与热的浓硫酸反应生成OsO4或OsO2。铂、铱、钌不与硫酸反应。王水是溶解铂、钯的最好溶剂。但王水不能溶解铑、铱、锇和钌,只有当它们为高分散的粉末和加热条件下可部分溶解。在有氧化剂存在的盐酸溶液中(如H2O2、Cl2等)于封管的压力条件下,所有的铂族金属都能被很好地溶解。

通常,碱溶液对铂族金属没有腐蚀作用,但当加入氧化剂时则有较强的相互作用。如OsO4就能够在碱溶液中用氯酸盐氧化金属锇来获得。在氧化剂存在条件下,粉末状铂族金属与碱高温熔融,反应产物可溶于水(对于Os和Ru)、盐酸、溴酸和盐酸与硝酸的混合物中,由此可将难溶的铂族金属转化为可溶性盐类。高温熔融时,常用的混合熔剂有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸盐存在条件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高温烧结方法通常被认为是将铂族金属如铑、铱、锇、钌转化成可溶性化合物的方便途径。

在碱金属氯化物存在条件下,铂族金属的氯化作用同样是将其转化成可溶性化合物的最有效途径之一。

(二)贵金属分析中常用的化合物和配合物

1.贵金属的卤化物和卤配合物

贵金属的卤化物或卤配合物是贵金属分析中最重要的一类化合物,尤其是它们的氯化物或氯配合物。因为贵金属分析中大多数标准溶液的制备主要来自这些物种;铂族金属与游离氯反应,即氯化作用,被广泛用于分解这些金属;更重要的是在铂族金属的整个分析化学中几乎都是基于在卤配合物水溶液中所发生的反应,包括分离和测定它们的方法。

铂族金属配合物种类繁多,能与其配位的除卤素外,还有含O、S、N、P、C、As等配位基团,常见的有

NH3、NO、NO2、PH3、PF3、PCl3、PBr3、AsCl3、CO、CN-和多种含S、N、P的有机基团。贵金属的简单化合物在分析上的重要性远不如其配合物。对于金或银虽然形成某些稳定配合物,但无论其种类或数量都无法与铂族金属相比拟。

2.贵金属氧化物

金、银的氧化物在分析上并不重要。金的氧化物有Au2O3、Au2O,Au2O很不稳定,与水接触分解为Au2O3和Au。用硝酸汞、乙酸盐、酒石酸盐等还原剂还原Au(Ⅲ)可得到Au2O。Au(Ⅲ)与NaOH作用时,生成Au(OH)3沉淀。通常,Au(OH)3以胶体形态存在,所形成的胶粒直径一般为80~200 nm。

向银溶液中小心加入氨溶液时可形成白色的氢氧化银。当以碱作用时则有棕色的氧化银析出。氧化银呈碱性,能微溶于碱并生成[Ag(OH)2]-;在300℃条件下分解为 Ag和O2。

铂族金属及其化合物在空气中灼烧可形成各种组分的氧化物。由于许多氧化物不稳定,或者稳定的温度范围比较窄,或者某些氧化物具有挥发性,因此在用某些分析方法测定时要十分注意。例如,一些采用重量法的测定需在保护气氛中灼烧成金属后称重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易挥发,这也是与其他贵金属分离的最好方法。铂族金属对氧的亲和力顺序依次为:Pt<Pd<Ir<Ru<Os。铂的亲和力最差,但粉末状的铂能很好与氧结合。贵金属的氧化物在溶液中多呈水合氧化物形式存在。

3.贵金属的硫化物

形成硫化物是贵金属元素的共性,但难易程度不同。其中IrS生成较难,而PdS、AgS较容易形成。贵金属硫化物均不溶于水,其溶解度按下列顺序依次减小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在贵金属的氯化物或氯配合物(银为硝酸盐)溶液中,通入H2S气体或加入Na2S溶液可得到相应的硫化物沉淀。

4.贵金属的硝酸盐和亚硝酸盐化合物或配合物

在贵金属的硝酸盐中,AgNO3是最重要的化合物。分析中所用的银标准溶液都是以AgNO3为初始基准材料配制的。其他贵金属的硝酸盐及硝基配合物不稳定,易水解,在分析中较少应用。铂族金属的亚硝基配合物是一类十分重要的配合物。铂族金属的氯配合物与NaNO2在加热条件下反应,生成相应的亚硝基配合物。这些配合物很稳定,在pH 8~10的条件下煮沸也不会发生水解。利用这种性质可进行贵金属与贱金属的分离。

三、贵金属矿石矿物的取样和制样

含有贵金属元素的样品在分析之前必须具备两个条件:①样品应是均匀的;②样品应具有代表性。否则,无论分析方法的准确度如何高或分析人员的操作如何认真,获得的分析结果往往是毫无意义的。此外,随着科学技术的发展,贵金属资源被广泛应用于各工业部门和技术领域,由于贵金属资源逐渐减少,供需矛盾日渐突出,其价格日趋昂贵,因此对分析结果准确性的要求比其他金属要高。

贵金属矿石矿物的取样、加工是为了得到具有较好代表性和均匀性的样品,使所测试样品中贵金属的含量能够较真实地反映原矿的情况,避免取样带来的误差。贵金属在自然界中的赋存状态很复杂,又由于贵金属元素的含量较低,故分析试样的取样量必须满足两个因素:①分析要求的精度;②试样的均匀程度,即取出的少量试样中待测元素的平均含量要与整个分析试样中的平均含量一致。实际上贵金属元素在矿石中的分布并不均匀,往往集中在少数矿物颗粒中,要达到取出的试样与总试样完全一致的要求是很难做到的。因此,只能在满足所要求的分析误差范围内进行取样,增加取样量,分析误差可能会减小。试样中贵金属矿物的破碎粒度与取样量有很大关系,粒度愈大,试样愈不均匀,取样量也应愈大,因此加工矿物试样时应尽可能磨细。为了达到一定的测量精度,除满足上述取样量的条件外,还应满足测定方法的灵敏度。

一般的矿样,可按常规方法取样、制样。金多以自然金的形式存在于矿石矿物中,它的粒度变化较大,大的可达千克以上,而微小颗粒甚至在显微镜下都难以分辨。金的延展性很好,它的破碎速度比脉石的破碎速度慢,因此对未过筛的和残留在筛缝中的样品部分绝对不能弃之,此部分大多含有自然金。金矿石的取样与加工一般按切乔特经验公式进行。对于比较均匀的样品,K取值为0.05,一般金矿石样品,K取值为0.6~1.5。

对于较难加工的金矿石,在棒磨之前加一次盘磨碎样并磨至0.154mm,因为棒磨机的作用是用钢棒冲击和挤压岩石再磨细金粒,能满足一般金粒较细的试样所需的破碎粒度。含有较粗金粒的试样,用棒磨机只能使金粒压成片状或带状,达不到破碎的目的。而盘磨机是利用搓压的作用力使石英等硬度较大的物料搓压金粒来达到破碎的目的。

在金矿样的加工过程中,应注意以下几个方面:

(1)如果矿样量在1kg以下,碎样时应磨至200目。一半送分析用,一半作为副样。如果矿样量在1 kg以上,按加工流程进行破碎,作基本分析的样品重量不应少于500~600 g。

(2)若样品中含有明金时,应增设80目过筛和筛上收金的过程。

(3)对于1∶20万区域化探水系沉淀物样品,应将原分析样混匀后分取40g,用盘磨粉碎至200目,混匀后作为金的测定样。

(4)在过筛和缩分过程中,任何时间都不能弃去筛上物和损失样品。

(5)所使用的各种设备每加工完一个样品后必须彻底清扫干净,并认真检查在缝隙等处有无金粒残留。

(6)矿样经棒磨机粉碎至200目后,送分析之前必须再进行混匀,以防止因金的密度大在放置时间过久或运送过程中金下沉而导致样品不均匀。

由于金在矿石中的不均匀性,要制取有代表性、供分析用的矿样,应尽可能地增大矿石取样量。在磨样过程中,对分离出粗粒的金应分别处理。其他贵金属矿样的取样与加工要比金矿石的容易。

为了获得准确的分析结果,贵金属试样在分析之前,取样与样品的加工,试样的分解将是整个分析工作中的重要环节。另一方面,由于在大多数的分析方法中,获得的分析结果常常是通过与已知的标准物质的含量,包括标准溶液和标准样品进行比较获得的,因此,准确的分析结果同样也依赖于贵金属标准溶液的准确制备。

四、贵金属矿样的样品处理技术

贵金属矿石矿物的分解有其特殊性,是分析化学中的难题之一。因为多数贵金属具有很强的抗酸、碱腐蚀的特点,常用的无机溶剂和分解技术难以分解。

含铑、铱和钌等试样,在常温、常压,甚至较高温度、压力下用王水也难以分解。

砂铂矿多由超基性岩体中的铬-铂矿风化次生而成,其密度及硬度极高、化学惰性极强,在高温、高压条件下溶解也较慢。

锇铱矿是以锇和铱为主的天然合金,晶格类型的差别较大(铱为等轴晶系,锇为六方晶系)。含锇高时称为铱锇矿,呈钢灰色至亮青铜色;含铱高时称为锇铱矿,呈明亮锡白色。它们的密度都很大,性脆且硬,含铱、钌高时磁性均较强,锇高时相反。化学性质也都很稳定,于王水中长时间煮沸难以被分解。

为了分解这些难溶物料,需要引入一些特殊的技术,如焙烧预处理技术、碱熔融技术、加压酸消解技术等。

(一)焙烧预处理方法

贵金属在矿石中除以自然金、自然铂等形式存在外,还以各种金属互化物形式存在,并常伴生在硫化铜镍矿和其他硫化矿中。用王水分解此类矿样时,由于硫的氧化不完全,易产生元素硫,并吸附金、铂、钯等,使测定结果偏低,尤其对金的吸附严重,故需要先进行焙烧处理,使硫氧化为SO2而挥发。焙烧温度的控制是很重要的,温度过低,分解不完全;温度过高,会烧结成块,影响分析测定。常用的焙烧温度为600~700℃,焙烧时间与试样量和矿石种类有关,一般为1~2h。不同硫化矿的焙烧分解情况不同,其中黄铁矿最易分解,其次是黄铜矿,最难分解的是方铅矿。以下是几种贵金属矿石的焙烧处理方法。

(1)含砷金矿的焙烧。先将矿石置于高温炉中,升温至400℃恒温2h,使大部分砷分解、挥发,继续升温至650℃,使硫和剩余的少量砷完全挥发。于矿石中加入NH4NO3、Mg(NO3)2等助燃剂,可提高焙烧效率,缩短焙烧时间。如果金矿中砷的含量在0.2%以上,且砷含量比金含量高800倍的条件下焙烧时,会生成砷和金的一种易挥发的低沸点化合物而使金损失,此时的焙烧温度应控制在650℃以下。当金矿石中硅含量较高时,加入一定量NH4HF2可分解SiO2。

(2)含银硫化矿的焙烧。先将矿石置于高温炉中,升温至650℃,恒温2h,使硫完全挥发。当矿石中硅含量较高时,即使加入NH4HF2,由于焙烧过程中生成难溶的硅酸银,使测定结果严重偏低。为此,用酸分解焙烧试样时,加入HF以分解硅酸银,可获得满意的结果。

(3)含铂族元素硫化矿的焙烧。与含金硫化矿的焙烧方法相同。

(4)含锇硫化矿的焙烧。试样进行焙烧时,易氧化为OsO4形式挥发损失,于焙烧炉中通入氢气,硫以H2S形式挥发;或按10∶1∶1∶1比例将矿石、NH4Cl、(NH4)2CO3、炭粉混合后焙烧,可加速硫的氧化,对锇起保护作用。

(二)酸分解法

贵金属物料的酸分解法是最常用的方法,操作简便,不需特殊设备。常用的溶剂是王水,它所产生的新生态氯具有极强的氧化能力,是溶解金矿和某些铂族矿石的有效试剂。溶解金时可在室温下浸泡,加热使溶解加速。溶解铂、钯时,需用浓王水并加热。此外,分解金矿的试剂很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸盐包裹的矿物,应在王水中加少量HF或其他氟化物分解硅酸盐。酸分解方法不能用于含铑、铱矿石的分解,此类矿石只有在高温、高压的特定条件下强化溶解才能完全溶解。

(三)碱熔法

固体试剂与试样在高温条件下熔融反应可达到分解的目的。最常用的是过氧化钠熔融法,几乎可以分解所有含贵金属的矿石,但对粗颗粒的锇铱矿很难分解完全,常需要用合金碎化后再碱熔才能分解完全。本法的缺点是引入了大量无机盐,对坩埚腐蚀严重,又带入了大量铁、镍。使用镍坩埚还能带入微量贵金属元素。此法多用于无机酸难以分解的矿石。

五、贵金属元素的分离和富集方法

贵金属元素在岩石矿物中的含量较低,因此,在测定前对其进行分离富集往往是必要且关键的一步。贵金属元素的分离和富集有两种方法;一种是干法分离和富集——火法试金;一种是湿法分离和富集——将样品先转为溶液,然后采用沉淀、吸附、离子交换、萃取、色层等方法进行分离富集贵金属与贱金属分离,主要有共沉淀分离法、溶剂萃取法、离子交换分离法、活性炭分离富集法、泡沫塑料富集法及液膜分离富集法等。目前应用最广泛的是火试金法、泡沫塑料法、萃取法。具体方法详见任务2、任务3、任务4的相关内容。

六、贵金属元素的测定方法

(一)化学分析法

1.重量法测定金与银

将铅试金法得到的金、银合粒,称其总量。经“分金后”得到金粒,称重。两者重量之差为银的重量。

为了减少金在灰吹中的损失和便于分金,在熔炼时通常加入毫克量的银。如果试样中含金量较高,加入的银量必须相应增加,以达金量的3倍以上为宜。低于此数时,分金不完全,且银不能完全溶解,影响测定结果。

在实际应用中,不同含金量可按表7-1所示的银与金的比例加入银,可满意地达到分金效果。

表7-1银与金的比例

如合粒中含银量低、金量高时,可称取两份试样,一份不加银,所得合粒称重,为金银合量。另一份加银,分金后测金。二者重量之差为银量。亦可先将金、银合粒称重,再加银灰吹,然后进行分金,测得金量。差减法得银量。

分金可采用热硝酸(1∶7),此时合粒中的银、钯以及部分铂溶解,而金不溶并呈一黑色的整粒留下来。如果留的下金粒带黄色,则表示分金不完全,应当取出,补加适量银,包在铅片中再灰吹,然后分金。

用硝酸(1∶7)分金后,金粒中还残留有微量银,可再用硝酸(1∶1)加热数分钟除去。

2.滴定法

在贵金属元素的滴定法中,主要利用贵金属离子在溶液中进行的氧化还原反应、形成稳定配合物反应、生成难溶化合物沉淀或被有机试剂萃取的化合反应。被滴定的贵金属离子本身多数是有颜色的,而且存在着复杂的化学形态和化学平衡反应,故导致滴定法的应用有一定的局限性。

金的滴定法主要依据氧化还原反应,包括碘量法、氢醌法、硫酸铈滴定法、钒酸铵滴定法及少数催化滴定法和原子吸收-碘量法联合的分析方法。其中碘量法和氢醌法在我国应用最普遍,它们与活性炭或泡塑吸附分离联用,方法的选择性较好,且可测得微量至常量的金,已成为经典的测定方法或实际生产中的例行测定规程。由于样品的成分的复杂性,故用活性炭吸附分离-碘量法测定金时,还应针对试样的特殊性采取相应的预处理手段。例如,含铅、银高的试样,可加入5~7g硫酸钠,煮沸使二氯化铅转化为硫酸铅沉淀过滤除去,银用盐酸溶液(2+98)洗涤,可避免氯化银沉淀以银的氯配离子形式进入溶液中而被活性炭吸附。含铁、铅、铜、锌的试样,在滴定时加入0.5~1 g氟化氢铵可掩蔽50mg铁、铅,3~5mL的EDTA溶液(25g/L)可掩蔽大量铅、铜、锌,但需立即加入碘化钾,以避免Au(Ⅲ)被还原为Au(Ⅰ)。含硫高时,于马弗炉中500℃温度下焙烧3h后再于650~700℃恒温1~2h,可避免金的分析结果偏低。含锑的试样,用氢氟酸蒸发2次,可消除其对金的影响。试样中含铂和钯时,会与碘化钾形成红色和棕色碘化物,且消耗硫代硫酸钠,可于滴定时加入5mL硫氰酸钾溶液(250g/L),使之形成稳定的配合物而消除干扰。用碘量法测定金的误差源于多种因素:金标准溶液的稳定性、活性炭吸附金的酸度、水浴蒸发除氮氧化物的条件、淀粉指示剂用量、滴定前碘化钾的加入量、分取试液和滴定液的浓度、标定量的选择等,因此应予以注意。

关于银的化学滴定法,应用最普遍的是硫氰酸钾(铵)和碘化钾沉淀滴定法,其次是硫代硫酸钠返滴定法、硫酸亚铁氧化还原滴定法和二硫腙萃取滴定法等。

硫氰酸钾滴定法测定银:将试金所得的金、银合粒用稀硝酸溶解其中的银,以硫酸铁铵为指示剂,用硫氰酸钾标准溶液滴定至淡红色,即为终点。其主要反应式如下:

Ag++KCNS→K++AgCNS↓

Fe3++3KCNS→3K++Fe(CNS)3

在铂族金属的滴定中,以莫尔盐还原Pt(Ⅳ),用钒酸铵返滴定法或二乙基二硫代氨基甲酸钠滴定法的条件苛刻,选择性差,不能用于组成复杂的试样分析中。于pH为3~4酸性介质中,长时间煮沸的条件下,Pt(Ⅳ)能与EDTA定量络合,在乙酸-乙酸钠缓冲介质中,用二甲酚橙作指示剂,乙酸锌滴定过量的EDTA,可测定5~30mg Pd。利用这一特性,采用丁二肟分离钯,用酸分解滤液中的丁二肟,可测定含铂、钯的冶金物料中的铂。Pd(Ⅱ)的滴定测定方法较多,常见的是利用形成难溶化合物沉淀和稳定配合物的反应。在较复杂的冶金物料中,采用选择性试剂掩蔽钯,二甲酚橙作指示剂,锌(铅)盐滴定析出与钯等量的EDTA测定钯的方法较多。

(二)仪器分析法

贵金属在地壳中的含量很低,因此各种仪器分析方法在贵金属的测定中获得了非常广泛的应用。主要有可见分光光度法、原子吸收光谱法、发射光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。具体的应用请参阅本项目的任务2、任务3、任务4的相关内容。

七、贵金属矿石的分析任务及其分析方法的选择

贵金属矿石的分析项目主要是金、银、铑、钌、钯、锇、铱、铂含量的测定,除精矿外,一般矿石中贵金属的含量都比较低,因此,在选择分析方法时,灵敏度是需要重点考虑的因素。一般,银的测定主要用原子吸收光谱法和可见分光光度法,且10 g/t以上含量的不需要预富集,可直接测定。可见分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法在金的测定上都获得了广泛的应用。金的测定一般都需要采取预富集手段。铑、钌、钯、锇、铱、铂在矿石中含量甚微,因此对方法的灵敏度要求较高。目前,电感耦合等离子体质谱法在铑、钌、钯、锇、铱、铂的测定的应用已经越来越广泛和成熟。另外光度法、电感耦合等离子体发射光谱法也在铑、钌、钯、锇、铱、铂的测定中发挥了重要作用。

技能训练

实战训练

1.学生实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成贵金属矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

二、任务钴产品中杂质元素的测定

——原子发射光谱法

任务描述

钴产品中杂质元素的测定,单项分析方法有光度分析法和仪器分析法。对于产品而言,由于需要分析的元素比较多,而且含量低,同时需要考虑基体对测定结果的影响,比较理想的测定方法是利用发射光谱法,在标准样品中加入相当量的基体物质抵消基体对测定结果的影响,在合适的条件下,一次分析可以同时测定多个元素,可以对大批量的产品同时测定。通过本次任务的学习,掌握用发射光谱法测定钴系列产品中微量元素含量的方法,能够根据测定结果报出样品的分析结果。

任务实施

一、试样的处理

(1)草酸钴:取5 g试样于50mL瓷坩埚中,加入10mL左右的超纯硝酸,轻轻摇散至均匀,置低温电炉中加热,蒸发至干转变成氧化钴,驱尽氧化氮,转入750℃马弗炉灼烧半小时,取出冷却至室温,用玛瑙研钵研成粉末状备用。

(2)碳酸钴:取5 g试样于50mL瓷坩埚中,加入10mL左右的超纯硝酸,轻轻摇散至均匀,置低温电炉中加热,蒸发至干变黑,驱尽氧化氮,转入750℃马弗炉灼烧半小时,取出冷却至室温,用玛瑙研钵研成粉末状备用。

(3)精制氧化钴:取5 g试样于50mL瓷坩埚中,加入10mL左右的超纯硝酸,轻轻摇散至均匀,置低温电炉中加热,蒸发至干,驱尽氧化氮,转入750℃马弗炉灼烧半小时,取出冷却至室温,用玛瑙研钵研成粉末状备用。

(4)金属钴粉:取2g试样于50mL瓷坩埚中,吹少许水分散试样,沿坩埚内壁加入超纯硝酸,待剧烈反应稍缓,再慢慢加入硝酸至反应不再剧烈发生,置低温电炉上加热蒸干,驱尽氧化氮至不再冒浓烟,转入750℃马弗炉灼烧半小时,取出冷却,研磨后备用。

(5)氧化亚钴:取5 g试样于50mL瓷坩埚中,直接放入750℃马弗炉灼烧半小时,取出冷却,研磨后备用。

(6)四氧化三钴:取5g试样于50mL瓷坩埚中,直接放入750℃马弗炉灼烧半小时,取出冷却,研磨后备用。

(7)氯化钴:取5 g试样于50mL瓷坩埚中,加入10mL左右的超纯硝酸,轻轻摇散均匀,置低温电炉中加热,蒸发至干转变成氧化钴,驱尽氧化氮,转入750℃马弗炉灼烧半小时,取出冷却至室温,用玛瑙研钵研成粉末状备用。

二、仪器与试剂

(1)德国PGS-II型摄谱仪、光栅651条/mm、三透镜照明系统、映谱仪。

(2)测微光度计MD-100、SPI-A半自动测光仪。

(3)感光板:天津紫外I型。

(4)试样电极Ф6mm×300mm,车制成Ф3.5mm×6mm杯型电极;上电极Ф2mm×10 mm圆锥形石墨电极。

(5)试剂:

①氧化钴标准见下表4-2

表4-2钴标准杂质元素含量表(%)

②氧化镓:光谱纯

③碳粉

④无水乙醇

⑤碳酸锂:光谱纯

⑥硝酸:超纯

⑦显影液、定影液

——显影液配方:

A液:700mL水(35℃~45℃)+2g米吐尔+52g无水Na2SO3+对苯二酚10g→加水至1000mL。

B液:700mL水(35℃~45℃)+40g无水Na2CO3+2g溴化钾→加水至1000mL。

配制溶液A时,试剂必须按米吐尔→无水Na2SO3→对苯二酚的次序加入,且每种试剂完全溶解之后才能加入下一种试剂。

显影时将等量的A、B液混合成显影液。

——定影液配方:

650mL水(35℃~45℃)+240g海波+15g无水亚硫酸钠+15mL冰醋酸(98%)+7.5 g硼酸+15 g钾明矾→加水至1000mL。

配制方法与配显影液A一样。

⑧缓冲剂:以氧化镓∶碳酸锂∶碳粉=0.6∶10.4∶89的比例称取各试剂,于玛瑙研钵中反复加无水酒精充分研磨并烘干备用。

三、操作步骤

1.压样

按缓冲剂∶试样=1∶2称样,混合一起研磨15min,达到细而均匀,再压入Φ3.5mm×6 mm石墨电极中,按三标准试样法摄谱。

标准与试样同处理。

2.工作条件

(1)GS-Ⅱ光栅摄谱仪条件:狭缝宽0.009mm,遮光板3.2mm,极距3mm。

(2)摄谱条件:(阳极激发)电流12A,电压300V,曝光时间21s,阳极为试样电极,阴极为上电极(碳棒)。

(3)感光板:天津紫外Ⅰ型。

3.暗室处理

显影液温度:18℃~20℃,时间3min。

定影液温度:18℃~20℃,时间按感光板使用说明书处理。

4.测量

MD-100测微光度计、P标尺、SPI-A半自动测光仪。

四、分析线对及计算

1.分析线对(表4-3)

表4-3分析线对

续表

注:1Å=0.1nm。

2.计算

从ΔP-lgC工作曲线上查出对应数据,再根据各产品的换算系数得出杂质元素的含量。

五、各产品换算系数

(1)草酸钴:自制氧化钴标准÷ 2.28。

(2)碳酸钴:自制氧化钴标准÷ 1.62或以草酸钴标准含量×1.5。

(3)精制氧化钴:自制氧化钴标准×1。

(4)金属钴粉:自制氧化钴标准×1.36。

(5)氧化亚钴:自制氧化钴标准×1.07。

(6)四氧化三钴:自制氧化钴标准×1。

(7)氯化钴:自制氧化钴标准÷ 3.04。

六、质量表格填写

任务完成后,填写附录一质量表格3、4、9。

任务分析

一、原子发射光谱法原理

原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。在通常的情况下,原子处于基态。基态原子受到激发跃迁到能量较高的激发态。激发态原子是不稳定的,平均寿命为10-10~10-8s。随后激发原子就要跃迁回到低能态或基态,同时释放出多余的能量,如果以辐射的形式释放能量,该能量就是释放光子的能量。因为原子核外电子能量是量子化的,因此伴随电子跃迁而释放的光子能量就等于电子发生跃迁的两能级的能量差,即ΔE=hν=hc/λ(式中h为普朗克常数;c为光速;ν和λ分别为发射谱线的特征频率和特征波长)。

根据谱线的特征频率和特征波长可以进行定性分析。常用的光谱定性分析方法有铁光谱比较法和标准试样光谱比较法。

二、光谱分析特点

(一)优点

(1)能进行多元素同时测定。

(2)检出能力好,其绝对检出限可达10-8~10-9g,相对检测限可达0.1×10-6~10×10-6。

(3)分析速度快。

(4)应用范围广。

(二)缺点

其缺点是仪器价格昂贵,高含量分析的准确度较差,谱线之间干扰较严重,对某些非金属元素,如硫、硒,碲,卤素等检出能力较差。由于标准样品的不易配制及试样组分变化的影响,这给光谱分析带来一定困难。

三、定量分析的原理

元素的谱线强度I和它的含量c之间存在着如下的经验关系式是:

I= acb

式中:a决定于物质的激发和辐射过程中的各项因素;b决定于自吸收,只有在某一固定工作条件下a和b才是常数。将公式两边取对数,则:

lgI= blgc+lga

上式为光谱定量分析的基本关系式。如果用一系列元素含量不同的标准样品,在选定的工作条件下激发,并分别测得谱线强度,以lgI为纵坐标,以lgc为横坐标,绘制工作曲线,即可进行定量分析。

内标法是选一条分析元素的灵敏线作分析线,选基体元素(或外加一定量的内标元素)的一条谱线作内标线,组成分析线对。通过测量分析线对的相对强度进行光谱定量分析。

最常用的光谱定量分析法为三标准试样法。此法是在每次分析时,在同一块感光板上,拍摄试样及一系列不同含量的标准样品的光谱。其中标准样品数目不得少于三个,实际工作中常用4~7个标准样品。其分析过程为:先测每个标准样品光谱中分析线及内标线的黑度值S,计算分析线对的黑度差ΔS,以ΔS为纵坐标,以标准样品中分析元素含量的对数lgc1为横坐标绘制工作曲线。再测量试样光谱中分析线和内标线的黑度值S,算出黑度差ΔS,从工作曲线上求出lgcx,查反对数即得出分析元素的含量cx,为了提高分析的准确度,每一样各拍摄三次光谱,取待测元素分析线对黑度差的平均值。

在选择内标元素及分析线对时,必须考虑以下几个问题:

(1)内标元素含量应不随分析元素含量的变化而变化。标样和试样中内标元素的含量必须相同。

(2)内标元素与分析元素的挥发性应该相似,避免分馏效应影响结果再现性。

(3)分析元素与内标元素应具有相近的电离电位和激发电位。

(4)分析线与内标线的波长距离应尽量靠近,并处于相同的背景中。

在实际工作申,选择完全合乎要求的分析线对是不容易的,通常只是近似地满足要求。因此,即使采用了内标法进行分析,也要严格控制一系列光谱分析条件,以避免由于外界条件变化而影响分析准确度。

实验指南与安全提示

试样处理时,要充分摇匀,电炉温度不宜过高,以防溅跳。

试样与缓冲剂研磨时,用力要均匀,时间要充分。

压样时必须压紧;摄谱时上、下电极一定要对齐。

显影、定影温度严格执行。

定影后,水洗自然晾干或远距离红外灯烘干,避免光板胶面发生流动、变形。

拓展提高

氧化钴的生产工艺流程介绍

钴矿用球磨机粉碎到粒度约-100目大小后,将矿浆打到溶解槽,用硫酸或盐酸溶解后压滤,将滤液加热,往热溶液中加入碳酸钠、硫化钠、氟化钠、硫代硫酸钠等化工原料作为除杂剂,除去溶液中的大量的铜、铁、钙、镁、铅、锌等杂质。少量的杂质随溶液进入下一道工序,利用P204(磷酸二异辛酯)作萃取剂,将钴、镍与铜铁等杂质元素分离,萃取液用稀盐反萃(洗脱),钴、镍进入水相中,将含钴、镍溶液送入含P507(2-乙基己基磷酸-2-乙基己基酯)的萃取槽进行钴镍分离。含镍溶液作为副产品生产硫酸镍,含钴溶液经浓缩达到规定的浓度后用盐酸反萃,生成氯化钴溶液,用草酸铵沉淀钴,转化为草酸钴沉淀,将沉淀物干燥后以草酸钴形式作为产品使用。草酸钴经高温煅烧后生成氧化钴,经氢气还原后制成钴粉。经钴镍分离后的钴溶液,如果用硫酸溶液洗脱,可制成硫酸钴产品,用醋酸洗脱可制成醋酸钴,氯化钴溶液用碳酸钠沉淀可制成碳酸钴,用于生产钴粉、氧化亚钴或四氧化三钴。

三、任务铜矿石分析方法的选择

任务描述

铜矿石属于有色金属矿石,矿石成分通常比较复杂。在实际工作中应根据试样中铜的含量及伴生元素情况,以及误差要求等因素选择合适的分离富集和测定方法。本任务对铜的化学性质、铜矿石的分解方法、铜的分析方法选用等进行了阐述。通过本任务的学习,知道铜的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法;学会基于被测试样中铜含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法;能正确填写样品流转单。

任务分析

一、铜在自然界的存在

铜在自然界分布甚广,已发现的含铜矿物质有 280多种。铜在地壳中的丰度为0.01%。

铜以独立矿物、类质同象和吸附状态三种形式存在于自然界中,但主要以独立矿物形式存在,类质同象和吸附状态存在的铜工业价值不高。

在独立矿物中,铜常以硫化物、氧化物、碳酸盐、自然铜等形式赋存。其主要的工业矿物有:

黄铜矿(CuFeS2)含铜34.6%(常与黄铁矿伴生)

斑铜矿(Cu5FeS4)含铜63.3%

辉铜矿(Cu2S)含铜79.9%

黝铜矿(Cu12Sb4S13)含铜46.7%

孔雀石(CuCO3·Cu(OH)2)含铜57.5%(常以蓝铜矿、褐铁矿等共生)

蓝铜矿(2CuCO3·Cu(OH)2)含铜55.3%

黑铜矿(CuO)含铜79.9%

赤铜矿(Cu2O)含铜88.8%

自然铜矿(Cu)含铜100%

富铜矿的工业品位为铜含量>1%。但当伴生有用组分且冶炼时有用组分又可回收者,其工业品位要求有所降低。

铜属于亲硫元素,所以常与银、金、锌、镉、镓、铟、铊、硒、碲、铁、钴、镍、砷、汞、锗等元素伴生。在铜矿分析中,应注意对其伴生元素的综合分析和综合评价。

二、铜的分析化学性质

1.铜的氧化还原性质

铜的价电子结构为3d104s1。在它的次外层有18个电子,由于有较多的电子处于离核较远的外层,所以对原子核的屏蔽效应就较小,相应地原子核的有效核电荷就较多,铜原子对外层s电子的束缚力也就较强,因而铜是不活泼的金属元素。铜是变价元素(主要呈现+1价和+2价两种价态)因而具有氧化还原性质。铜的氧化还原性质在分析中的应用十分广泛,可用于分解铜矿石,分析掩蔽铜对其他元素的干扰,用氧化还原法测定铜,等等。

例如,铜不能溶于非氧化性的酸中,但利用其氧化还原性质,可用硝酸溶解铜,硝酸使铜氧化并把铜转移到溶液中,同时放出氮的氧化物。通常采用的测定铜的碘量法也是基于铜的原子价可变的特性。

又如,

作用,产生硫化亚铜沉淀,此反应可用于铜与其他元素的分离:在用碘量法测定铜前,为了使铜从试液中分离来,可加入Na2S2O3使铜沉淀为硫化亚铜析出,经灼烧转为氧化铜,然后用硝酸溶解,用盐酸赶硝酸,最后用碘量法测定铜。反应如下:

岩石矿物分析

岩石矿物分析

2.铜的配位性质

它的简单离子在水溶液中都以水合配位离子[Cu(H2O)4]2+的形式存在。铜离子能与许多具有未共用电子对的配位体(包括无机的和有机的)形成配合物。铜离子的配合性质,对于比色法测铜、配位滴定法测铜和对铜的分离、富集、掩蔽等,均具有十分重大的意义。

例如:利用Cu2+与CN-反应生成的Cu+的氰配合物[Cu(CN)4]3-,而不被KOH、H2S沉淀,可使铜与其他金属元素分离。在用EDTA配位滴定测定试样中的Ca、Mg时,就可用此配合物的生成来掩蔽Cu2+,从而消除Cu2+的干扰。此反应的方程式如下:

2Cu2++10CN-→2[Cu(CN)4]3-+(CN)2

Cu2+与铜试剂(二乙氨基二硫代甲酸钠)在pH为5~7的溶液中生成棕黄色沉淀,可用于铜的比色测定,也可用于铜的分离。

Cu2+的氨配合物(Cu(NH3)4)2+的蓝色可用于比色测定铜。也可用此配合物的生成,使铜与Fe3+、Al3+、Cr3+等分离。

又如:Cu2+与二甲酚橙(XO)和邻啡罗啉(Phen)反应生成异配位体配合物Cu2+-Phen-XO。利用此反应可用二甲酚橙作EDTA法测铜的指示剂,而不被铜所僵化,因为上述异配位体在滴定终点能很快地被EDTA所取代,反应如下:

Cu2+-phen-XO+EDTA→Cu2+-EDTA+Phen+XO

三、铜的测定方法

铜的测定方法很多。常用的有碘量法、极谱法及光度法、原子吸收光谱法和电感耦合等离子体发射光谱法等。

(一)碘量法

碘量法是测定铜的经典方法,测定铜的范围较宽,对高含量铜的测定尤为适用,对组成比较复杂的样品也适用,故碘量法仍为目前测铜的常用方法之一。碘量法已经被列为铜精矿测定铜的国家标准方法。

用碘量法测定岩石矿物中的铜,根据消除干扰元素所加的试剂不同,可分为:氨分离-碘量法、碘氟法、六偏磷酸钠-碘量法、焦磷酸钠-磷酸三钠—碘量法、硫代硫酸钠-碘量法以及硫氰酸盐分离-碘量法等。

1.氨分离-碘量法

试样经分解后,在铵盐的存在下,用过量氨水沉淀铁、锰等元素,铜与氨生成铜氨配合离子(Cu(NH3)4)2+,驱除过量的氨,在醋酸-硫酸介质中加入碘化钾,与Cu2+作用生成碘化亚铜并析出等当量的碘,以淀粉作指示剂,用硫代硫酸钠溶液滴定至蓝色退去,根据所消耗的硫代硫酸钠溶液的量,计算出铜的量。主要反应如下:

2Cu2++4I-→2CuI+I2

岩石矿物分析

2.碘氟法

本法与上法的区别在于用氟化物掩蔽Fe3+的干扰,省去了铜与铁的分离步骤,因而是一个快速法。

用氟化物掩蔽铁是在微酸性溶液(pH为2~4)中,使Fe3+与F-形成稳定的配合离子(FeF6)3-而消除Fe3+的影响。

氟离子能与试样中的钙、镁生成不溶性的氟化钙和氟化镁沉淀,此沉淀吸附铜而导致铜的测定结果偏低。实验证明,氟化镁沉淀对铜的吸附尤为严重。为了消除钙、镁的干扰,可在热时加入氟化钠,适当稀释,以增加氟化钙和氟化镁的溶解度。另外,加入硫氰酸盐使生成溶度积更小的硫氰化亚铜沉淀,可以减少氟化钙对铜的吸附。当镁含量高时,虽氟化镁对铜的吸附比氟化钙尤甚,但氟化镁沉淀是逐渐形成的,因此只要缩短放置时间(加入氟化钠后立即加入碘化钾,放置1min后滴定),即可克服氟化镁吸附的影响。在采取上述措施后,60mg和100mg镁均不影响测定。

碘氟法测定铜的成败,在很大程度上取决于滴定时溶液的酸度。滴定时溶液的pH应保持在3.5左右,否则不能得到满意的结果。

碘氟法适用于钙、镁含量较低,含铜在0.5%以上的岩矿试样中铜的测定;对于钙、镁含量高的试样,用此法虽可测定,但条件不易掌握,此时。最好采用六偏磷酸钠—碘量法。

3.六偏磷酸钠-碘量法

六偏磷酸钠-碘量法测定铜与上述两法的主要区别在于采用六偏磷酸钠掩蔽铁、钙、镁等的干扰。

六偏磷酸钠在pH=4的醋酸-醋酸钠缓冲溶液中,能与Fe3+、Ca2+、Mg2+形成稳定的配合物,而达到消除Fe3+、Ca2+、Mg2+的干扰目的。它在测定条件下,可掩蔽30mg铁,60mg钙和30mg镁,所以此法能弥补碘氟法之不足,适用于含钙、镁较多,铁不太多,含铜在0.5%以上的岩矿试样中铜的测定,是一个简便快速的方法。

六偏磷酸钠虽可解决钙、镁的干扰问题,但它对铜也有一定的配合能力,会影响Cu2+与I-的反应。应在加入碘化钾之后立即加入硫氰酸盐,以免铜的结果偏低,并使反应尽快完全。

焦磷酸钠-磷酸三钠-碘量法是对碘氟法和六偏磷酸钠法的改进。它用焦磷酸钠-磷酸三钠在pH 2~3.3的情况下掩蔽铁、铝、钙、镁等的干扰,即可避免氟化物对环境的污染,又具有碘氟法的准确高、快速等优点,适用于一般矿石中铜的测定。

(二)铜试剂光度法

铜试剂(二乙基二硫代氨基甲酸钠)在pH为5.7~9.2的弱酸性或氨性溶液中,与Cu2+作用生成棕黄色的铜盐沉淀,在稀溶液中生成胶体悬浮液,若预先加入保护胶,则生成棕黄色的胶体溶液,借以进行铜的光度法测定。反应如下:

2NC2H5C2H5CSSNa+Cu2+→(NC2H5C2H5CSS)2Cu+2Na+

在pH 5.7~9.2范围内,铜(Ⅱ)与显色剂所呈现的颜色比较稳定。有很多元素如铁、锰、铅、锌、钴、镍、锡、银、汞、铋、锑、铀、镉、铬等都有与铜试剂生成难溶的化合物,有的有颜色,有的没有颜色。消除这些干扰的方法,在一般的情况下可加氨水-氯化铵,使一些元素成氢氧化物沉淀与铜分离。在必要时或要求精确度高时,则可加入EDTA消除铁、钴、镍、锰、锌等元素的干扰,然后用乙酸乙酯萃取铜与铜试剂所生成的配合物,进行比色。一般采用沉淀分离、有机试剂萃取或EDTA掩蔽等方法分离干扰元素以消除干扰。各种分离方法均有各自特点,适用于不同试样的分析。

1.EDTA掩蔽-铜试剂萃取光度法

EDTA掩蔽-铜试剂萃取比色法是用EDTA消除铁、钴、镍、锰等元素的干扰,然后用乙酸乙酯萃取铜试剂-铜配合物,以目视或光电比色测定铜。

用乙酸丁酯等有机溶剂作萃取剂时,应注意严格控制试样的水相和有机相的体积与标准一致,否则由于乙酸丁酯等部分与水混溶会使有机相体积不等而影响结果。

EDTA也能与铜生成可溶性配合物而阻碍显色,但当加入铜试剂后,铜就与铜试剂作用生成比铜-EDTA更稳定的化合物(5% ETDA加入5mL对测定无影响)。为了使EDTA-铜完全转变为铜试剂-铜化合物使显色完全,在加入显色剂后必须放置15min后才能比色。同时,调节pH时氨水过量,若pH>9,则在大量EDTA存在下萃取率将降低。

EDTA的加入量应是试样铁、锰、镍、钴总量的10倍。钨、钼等高价元素含量较高时,应适当增加柠檬酸盐的加入量,对铬矿样品增加铜试剂的加入量。

铋与铜试剂生成的沉淀也溶于有机溶剂,如溶于CHCl3呈黄色而干扰测定。其消除办法是:当铋量少于1mg时,可用4mol/L盐酸洗涤有机相除去;铋量较高时,可用氨水-氯化铵将铋沉淀分离。

本法可测定试样中0.001%~0.1%的铜。

2.沉淀分离-铜试剂光度法

在pH 5.7~9.2范围内,Cu(Ⅱ)与显色剂所呈现的颜色比较稳定。为消除其他元素的干扰,在小体积溶液中加入氢氧化铵-氯化铵使铁等干扰元素生成淀,铜形成铜氨配合物进入溶液中,过滤使铜与干扰元素分离,然后加入铜试剂进行光度法测定。

在pH 9.0~9.2的氨性溶液中显色15min后,颜色即稳定,并可保持24 h不变。本法适用于0.001%~0.1%铜的测定。

(三)双环己酮草酰二腙光度法

试样用酸分解,在pH 8.4~9.8的氨性介质中,以柠檬酸铵为配位剂,铜与双环己酮草酰二腙生成蓝色配合物,在分光光度计上,于波长610 nm处,测量吸光度。

在试样测试条件下,铜的含量在0.2~4 g/mL符合比耳定律。存在柠檬酸盐时显色10~30min颜色达到最深,可稳定5 h以上。

最适宜的酸度是pH 8.4~9.8。pH<6.5时,形成无色配合物;pH>10时,试剂自身分解。

(四)极谱法

极谱法测定铜,目前生产上多采用氨底液极谱法。所谓氨底液极谱法即以氨水-氯化铵作支持电解质。常采用动物胶作极大抑制剂,亚硫酸钠作除氧剂,在此底液中,铜的半波电位是-0.52 V(第二波半波电位,对饱和甘汞电极)。

氨底液的优点是干扰元素很少。铜在此底液中产生两还个原波:

(Cu(NH3)4)2++e→(Cu(NH3)2)++2NH3(1)

(Cu(NH3)2)++e+Hg→(Cu(Hg)+2NH3(2)

第一个波的半波电位(E1/2)为-0.26V,第二个的半波电极(E1/2)为-0.52V(对饱和和甘汞电极),通常利用第二个波高进行铜的定量。镉、镍、锌等的起始电位在铜之后,不干扰。铁由于在此底液中生成氢氧化铁沉淀而不在电极上还原,不产生干扰。Cr6+因在铜的前面起波(E1/2=-0.20V)而干扰,可在试样分解后加入盐酸蒸干几次,使Cr6+还原为Cr3+,以消除大部分铬的干扰。Co2+还原至Co+时的E1/2=-0.3V,与铜的E1/2=-0.52V相差较大,但当钴含量>0.5%时就干扰了。铊的半波电位为-0.49V,与铜波重合,当铊含量>0.1%时,使结果偏高。钴、铊含量高时,可用硫代硫酸钠在3%硫酸溶液中使铜沉淀为硫化亚铜而与干扰元素分离。氨底液法使用于铜矿,铅锌矿和铁矿中铜的测定。测定范围为0.01%~10%,用示波极谱法可测定0.001%以上的铜。

随着极谱分析的发展,玻璃石墨电极正向扫描已成功地运用于铜的定量分析。铜在玻璃石墨电极上有两个还原波,第一个波是Cu2+→Cu+,第二个波是Cu+→Cu0,而第一波(用示波极谱仪测定,峰值电位EP≈0.1V)波形好,波高稳定,所以生成上用第一个波进行定量测定。据有的实验室实践得知,所选择的底液当氨水为1.5mol/L,氯化铵为0.5mol/L,亚硫酸钠为1%~2%时,图形最好,波高最稳定。铜在0~20mg/50mL时,其波高与浓度成正比。在此底液中,镍的浓度>5mg/50mL时,干扰测定,波不成峰状,但对铜的波高无大影响。

(五)原子吸收分光光度法

用原子吸收分光光度法测铜,方法灵敏,简便快速,测定2%~10%及0.05%~2.2%铜时绝对误差分别为0.13%及0.03%,特别适用于低含量铜的测定,当条件选择适当时,可测至十万分之一的铜。

由于不用型号仪器的性能不同,各实验室的条件也有差异,所以用原子吸收分光光度法测铜的最佳条件在各实验室也有所不同。

(六)X射线荧光分析法

当由X射线管或由放射性同位素放出的X射线或γ射线,打在试样中的铜原子上时,铜被激发而放出具有一定特征(即能量)的X射线,即荧光,例如铜的Kα1=8.04 keV。测定荧光的强度,就可知道铜的含量。

测量X射线的能量,通常可用两种方法:一种是利用X射线在晶体上的衍射,使用晶体分光光度计按特征X射线的波长来区分谱线,此即波长色散法;另一种是根据入射X射线经过探测器按能量区分不同特征辐射的谱线,此即色散法。在此,我们仅介绍能量色散法。

能量色散法测定铜的激发源:目前用238Pu作激发源,激发效率较高。

探测器工作电压:通常可在不同高压下测量某一X射线能谱,分别求出它们的分辨率,选择能量分辨率最佳者的电压为工作电压。为了减少光电倍增管的噪声影响,电压应尽可能低些。

放大倍数的选择:当测铜的Kα线时,国产仪器放大100倍左右是合适的,可使特征X线落在阀压的中部。

平衡滤片:测定铜,以用钴镍滤片为最好。

道宽和阀压:所谓阀压、道宽的选择,是指在测量工作中,使仪器测量铜的特征X射线谱的哪一部分的问题。选择适当元素的道宽和阀压,目的是消除平衡滤片不能完全消除其他元素的X射线及散射线的影响,从而提高仪器的分辨率。

当待测元素附近无其他元素的特征X射线严重干扰时,可采用待测元素能谱线的全谱宽度为道宽值,使整个的谱线在道宽中间。当待测元素附近存在其他元素干扰时,可采用谱线半宽度法,即选择待测元素的谱线半宽度为道宽值,使能谱的主要部分落在道宽中间。

用该法测定铜时,干扰元素有与铜相邻原子序数为3~5的元素,如铁、钴、镍、锌等。这是因为所使用的探测元件分辨率不高,不能将它们发出的X射线与铜的X射线相区分。其消除的办法是选择适当的阀压及道宽,选择适当的激发源和平衡性好的滤片。基质效应所造成的干扰在X射线荧光法中使很普遍和严重的。消除基质效应,迄今为止,还没有找到一种既方便又具有普遍意义的方法。现有的一些方法均具有局限性,只有在一定条件下才能得到较好的效果。例如同基质成分标准比较法,就要求该矿区同类型矿石有分析结果作比较标准,这对普查阶段就存在一定困难。又如,在钴片中加少量轻物质的办法,只能在干扰元素较单一时,有针对性地进行。因为钴片上增加了轻物质,必然减少滤片对铜特征X射线的计数率差值和改变对其他元素的平衡特性。

四、铜试样的分解

铜矿石分解方法可分为酸溶分解法和熔融分解法。单项分析多采用酸溶分解法。铜矿石化学系统分析常采用熔融法分解其基体中的各种矿物。

1.酸溶分解

一般铜矿试样可用王水分解。

对于含硫量较高的铜矿试样,用逆王水、盐酸-硝酸-硫酸、盐酸-硝酸-高氯酸或盐酸-硝酸-氯酸钾(或少许溴水)分解。

氧化矿或含硅高时用盐酸-硝酸-氢氟酸(或氟化铵)-高氯酸或盐酸-硝酸-氟化物-硫酸分解。

含碳较高时用盐酸-硝酸-硫酸-高氯酸分解,加热至无黑色残渣。

含铜硫化矿物易溶于硝酸、王水或逆王水中。常先用盐酸处理,分解试样中的氧化矿物,同时使硫、砷等元素逸出,同时加硝酸分解硫化矿物。若发现有残存不溶物,可加氢氟酸或氟化铵处理。为防止硫化矿物分解时大量单体硫析出而使测定结果偏低,可加硝酸分解硫化矿之前,预先加入数滴溴水或氯酸钾溶液,使试样中硫化物氧化成硫酸盐,避免由于硝酸的作用而析出的单质硫包裹试样。如有少量单质硫析出,可加硫酸蒸发冒烟除去,使单体硫包裹的铜流出。

硫、砷及碳含量高的试样,也可先将试样在500~550℃灼烧后,再加酸分解,避免大量硫的析出。

对于含硅高的含铜氧化矿物如硅孔雀石、赤铜矿石等,可在用王水分解时,加入1~2g NH4F,并加硫酸或高氯酸加热至冒白烟,使试样完全分解。

2.熔融分分解

铜矿石化学分析系统常用碱性熔剂熔融。试样在热解石墨、银或镍坩埚中,用氢氧化钠(钾)、过氧化钠或过氧化钠和氢氧化钠熔融。

分析铜矿渣时,用酸性熔剂-焦硫酸钾在瓷坩埚中熔融。对酸不溶残渣也可用碳酸钠处理。由于铜矿石往往伴生有重金属元素,所以应注意试样不能直接在铂坩埚中熔融。

五、铜矿石分析项目及其分析方法的选择

铜矿石的全分析项目,应根据矿石的特征和光谱分析的结果确定,首先应确定包括那些有工业价值或可供综合利用的各种有色金属及稀有分散元素。在铜矿石中,可能共有的有色金属有铅、锌、砷、镍、锡、钼、钨、镉、汞等,分散元素有镓、铊、铟、硒、碲、锗等。

根据不同的情况,要求对铜矿石进行简项分析、组合分析和全分析。

铜矿石的简项分析一般是指测定铜。

铜矿石中组合分析项目有铅、锌、砷、钴、金、银、硫、钼、钨、镉、锑、镓、铊、铟、硒、碲、锗等。其中金、银、硫为商业计价元素。

铜矿石的全分析项目还包括硅、铁、铝、钙、镁、锰、钛、钡、钾、钠、硫、磷、氟、二氧化碳、吸附水、化合水等项目。

根据试样中铜的含量及干扰离子的情况,选择不同的测定方法。基于不用岩石矿物中铜含量的差异和各类测定的特点及使用范围等,目前对试样中高、中含量铜的测定常采用容量法(其中以碘量法的应用较为广泛),试样中低含量铜的测定则常采用光度法(其中以铜试剂光度法和双环己酮草酰二腙光度法等较常用)和极谱法、X射线荧光法、原子吸收光谱法等。

技能训练

实战训练

1.学生在实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成铜矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

参考资料:金属回收