首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
矿用过滤机 2024-09-30 20:20:24

贵重金属回收实时行情(双金属回收率)

一、贵重金属垃圾的金属种类,及其回收价值,回收建议

贵金属提炼方法贵金属回收方法贵金属生产技术工艺集锦

1用细菌菌体从低浓度的钯离子废液中回收钯的方法.1

2高温合金的电化学分解方法.8

3合成碳酸二苯酯用负载型催化剂及其制备方法.0

4从贵金属微粒分散液中回收贵金属的方法.0

5从富含铜的电子废料中回收金属和非金属材料的工艺.4

6电子废料的贵金属再生回收方法.1

7含砷硫化铜精矿湿法冶炼新工艺.6

8一种从含有贵金属的废催化剂中回收贵金属的方法.0

9一种分离铂钯铱金的方法.8

10钯合金吸附网.0

11从废铝基催化剂回收贵金属及铝的方法和消化炉.9

12用键合到膜上的能束缚离子的配位体分离和浓缩某些离子的方法.2

13真空蒸馏提锌和富集稀贵金属法.8

14氰化金泥的全湿法精炼工艺

15用萃取法回收废催化剂中的铂

16铱的回收和提纯方法

17用控制电位法从阳极泥提取贵金属

18金属回收室

19从精矿中回收贵金属的方法

20催化剂回收方法

21合成以聚硫醚为主链的胺型螫合树脂的新方法

22低温硫化焙烧—选矿法回收铜、金、回收

23一种从含金王水中提取金的实时双金属回收率方法

24用于处理氨的物质

25贵金属的回收.8

26碱蒸发器白银代用法.3

27岩石风化土吸附型稀散贵金属的提取技术方案.2

28金属阳极再生前处理方法.8

29延性合金.3

30提选人造金刚石的改进工艺.4

31从难处理金矿中回收金、银.X

32一种从重砂中回收细粒金的行情方法.4

33电影胶片洗印厂污水中银的回收方法及装置.4

34从铜阳极泥中回收金铂钯和碲.3

35铜、锌络离子废水废渣净化处理方法.6

36从氧化合成反应产物中回收铑的贵重方法.9

37回收贵金属和叔膦的方法.9

38板框式固定床电极电解槽及其工业应用.2

39回收贵金属.3

40第Ⅷ族贵金属的回收工艺.6

41从含碳矿物中回收金及其它贵金属的方法.0

42锡阳极泥提取贵金属和有价金属的方法.8

43催化裂化助燃剂制备方法.3

44从难处理矿石回收贵金属值的方法.6

45用硫代硫酸盐浸滤剂由贵金属矿中回收贵金属有用成分的湿法冶金方法.9

46用含氮和磷的双功能萃取剂提纯贵金属的新方法.8

47自含砷的难冶金矿中回收金银和雌黄的方法.X

48用溴酸盐和加合溴提取金的方法.0

49一种微量银废液回收银的方法.4

50从氯化银废液中回收银的方法.2

51改性石硫合剂提取贵金属的方法.0

52制备润滑基础油的方法.8

53多功能基螯合纤维的合成方法.5

54一种无氰解吸提金方法.9

55从硫化物矿中采用氯化物辅助水冶法提取镍和钴.2

56润滑基础油的制备方法.8

57加氢处理方法.3

58改性活性碳纤维还原吸附提取金属银.1

59吸附在活性炭上的贵金属的提取方法和系统.4

60一种用细菌吸附并还原水溶液中低浓度金离子的方法.8

61一种含氰溶液的净化工艺及其有价成份的回收方法.X

62微波预处理包裹型复合铂钯矿技术.2

63贵金属熔炼渣湿法冶金工艺.5

64一种处理低品位阳极泥的方法.1

65从废铑催化剂残液中回收金属铑的方法.0

66再生铅的冶炼方法.3

67从废物流中回收和分离金属的方法.6

68一种偕胺肟螯合功能纤维、其合成方法及其应用.7

69介孔二氧化钛光催化剂的金属制备方法.7

70贵金属和有色金属硫化矿复合浮选药剂.6

71有色金属硫化矿及含硫物料的还原造锍冶炼方法.9

72一种铅阳极泥的处理途径及处理工艺.4

73银电解液除铋、锑的回收方法.X

74环戊烯氧化法合成戊二醛的方法.2

75二氧化硫废气的净化处理方法.2

76高砷高硫金精矿脱除砷硫元素.3

77通过许多破碎/悬浮阶段从燃煤炉渣中回收贵金属.9

78啤酒花树脂酸的氢化方法.0

79带有多层振动网板电极的电解槽.8

80含贵金属废水回收处理装置

81气液分离型非挥发性溶液浓缩装置

82一种细粒金选矿溜板.5

83从高砷高硫金精矿中高回收率提金的预处理装置.6

84从废水中回收贵金属装置.0

85一种螺旋溜槽.9

86硝酸装置贵金属回收器.1

87制备4氨基二苯胺的方法.3

88便于分离和回收利用的贵金属纳米粒子的制备方法.0

89催化剂载体的选别处理方法.X

90从含银废液中回收银的方法.3

91合成对氨基酚用的负载型催化剂及其制备方法和使用方法.5

92一种具有还原功能螯合纤维的制备方法.8

93一种制备二氧化钛介孔材料的方法.4

94 2,2’二氯氢化偶氮苯的实时双金属回收率制备方法.6

95一种烷基蒽醌加氢的方法.2

96一种用微波反应制备壬二酸的方法.2

97一种芳香族硝基化合物加氢还原方法.6

98一种脱除乙烯原料中少量乙炔的方法.9

99一种脱除碳四烷基化原料中双烯烃的方法.4

100提炼含贵金属的精矿的方法.4

101亚微米银铜合金粉末的制备方法.7

102 2烷基3氨基噻吩衍生物的制造方法.4

103一种催化氧化体系制备壬二酸的方法.9

104新型高效贵金属吸附剂及其制备方法.0

105贵金属的无毒萃取提炼方法.0

106贵金属的无毒低成本提炼方法.9

107电镀生产线在线镍回收一体机.X

108从含氟的燃料电池组件中富集贵金属的方法.6

109一种聚酯废气的净化方法.8

110 34二氯硝基苯加氢制备34二氯苯胺的催化剂的制备方法.4

111一种铁闪锌矿与闪锌矿的选矿活化剂.7

112一种从铜镍合金中富集铂族贵金属的方法.X

113重金属离子废水的趋磁性细菌分离装置.1

114从含氰、含硫氰酸盐溶液中再生氰化钠的行情方法.8

115苯酚氧化羰基化合成碳酸二苯酯的催化剂及其制备方法和应用.3

116湿法火法联合工艺回收废水中和渣中铜、镍及贵金属的贵重方法.7

117从废氧化硅中回收吸附钯的方法.9

118从硫化物原料中回收金属的方法.6

119 8羟基喹啉型螯合树脂及其合成方法.3

120焚烧废物的成套装置和废物的综合利用方法.4

121粗铋中有价金属回收工艺.2

122用于燃料电池的碳载铂基催化剂及其制备方法.X

123硅废弃片表面金属的去除和贵金属银铂金的回收方法.3

124从炼锑废渣回收金银铂贵金属的工艺.8

125电解氯或氯化物的浸出方法及其装置.6

126一种活性炭负载的钌催化剂的回收方法.0

127一种纳米多孔金属催化剂及其制备方法.2

128丙烯腈装置吸收塔尾气的催化氧化处理工艺.5

129含砷金精矿提金尾渣再提金银的方法.7

130含砷金精矿提取金银方法.1

131丙烯酸及酯类废油资源化处理方法.5

132从金属载体催化剂装置中回收贵金属的方法.X

133含有铜、贵金属的金属废料和/或矿泥的处理方法.2

134回收金的方法.3

135一种从贵锑合金中富集贵金属的方法.3

136微波辐照制备高比表面积活性炭的方法.2

137辐射接枝法制备聚乙烯离子螯合膜的方法.X

138用于多相氧化羰基化合成碳酸二苯酯的催化剂.7

139两段焙烧法从含砷碳金精矿中回收AuAgCuAsS生产工艺.5

140微细浸染型金矿封闭式预处理装置.0

二、铂金有什么成份

铂的回收最常见氧化态为+2和+4。铂的实时双金属回收率+1和+3较少见,双金属(或多金属)化合物中的行情金属键可以提高其稳定性。

物理性质

纯铂为带光泽、有可延展性的银白色金属。它的可延展性是所有纯金属中最高的,胜过金、银和铜,但其可锻铸性却比金低。

铂金属的抗腐蚀性极强,在高温下非常稳定,电性能亦很稳定。它在任何温度下都不会氧化,但可被各种卤素、氰化物、硫和苛性碱侵蚀。铂不可溶于氢氯酸和硝酸,但会在热王水中溶解,形成氯铂酸(H2PtCl6)。

这些物理性质都使铂成为了工业上应用广泛的金属。由于能够抵抗侵蚀和保留光泽,所以铂还可以用于制首饰。

化学性质

铂的最常见氧化态为+2和+4。铂的+1和+3较少见,双金属(或多金属)化合物中的金属键可以提高其稳定性。四配位铂(II)化合物通常具有由16个电子形成的平面四边形结构。

单质铂金属的反应性很低,但它会在热王水中溶解,产生氯铂酸(H2PtCl6):Pt+ 4 HNO3+ 6 HCl→ H2PtCl6+ 4 NO2+ 4 H2O

铂属于软酸,所以铂和硫有化学亲和性,例如和二甲基亚砜(DMSO);科学家已发现多种DMSO配合物。

应用

在 2014年销售的 218吨铂金中,98吨用于汽车排放控制装置(45%),74.7吨用于珠宝(34%),20.0吨用于化工生产和石油精炼(9.2%),5.85吨用于制造硬盘驱动器等电气应用(2.7%)。

剩余的 28.9吨用于其他各种次要应用,例如医药和生物医学、玻璃制造设备、投资、电极、抗癌药物、氧传感器、火花塞和涡轮发动机。

1、催化剂

铂最常见的用途是作为化学反应的催化剂,通常作为铂黑。自 19世纪初起,铂粉就被用作催化剂,当时铂粉用于催化氢气的点燃。其最重要的应用是在汽车中作为催化转化器,使尾气中的低浓度未燃烧碳氢化合物完全燃烧成二氧化碳和水蒸气。

在石油工业中,铂还用作许多单独工艺的催化剂,尤其是在将直馏石脑油催化重整为富含芳烃化合物的高辛烷值汽油中。

2、贵金属投资

铂金是一种贵金属商品;其金银的ISO货币代码为 XPT。硬币、金条和锭被交易或收集。由于其惰性,铂金可用于珠宝,通常作为 90-95%的合金。

它用于此目的是因为它的声望和固有的金银价值。珠宝贸易出版物建议珠宝商将微小的表面划痕(他们称之为“铜锈”)作为一种理想的特征,以试图提高铂金产品的价值。

以上内容参考百度百科-铂金

三、金属矿选矿奥秘

(一)金属矿选矿的定义和作用

1.选矿的定义

选矿最早英文解释为 Ore Dressing或 concentration,意为矿砂富集。随后延伸为矿物处理,英文为 Mining process。选矿是利用矿物的物理或物理化学性质的差异,借助不同的方法,将有用矿物同无用的矿物分离,把彼此共生的有用矿物尽可能地分离并富集成单独的精矿,排除对冶炼和其他加工过程有害的杂质,提高选矿产品质量,以便充分、合理、经济地利用矿产资源。

矿物是在地壳中由于自然的物理化学作用或生物作用,所产生的自然元素和自然化合物,如金、银、铜自然元素和黄铁矿、黄铜矿、方铅矿等自然化合物。这些元素和化合物都具有各自的物理性质,如粒度、形状、颜色、光泽、密度、摩擦系数、磁性、电性、放射性、表面润泽性等。这些不同的性质为不同的选矿方法提供了依据。

2.选矿的作用和地位

自然界蕴藏着极为丰富的矿产资源,但是,除少数富矿外,一般含量都较低,例如,很多铁矿石含铁只有 20%~ 30%;铜矿石含铜小于 0.5%;铅锌矿石中铅锌的含量不到 5%;铍矿石氧化铍含量 0.05%~ 0.1%;这样的矿石直接冶炼,极不经济。一般冶金对矿石的含量有一定的要求。如铁矿石中铁的含量最低不得低于 45%;铜矿石中铜的含量最低不得低于 12%;铅矿石含铅不得小于 40%;锌矿石含锌不得小于 40%;氧化铍含量不小于 8%。对于采出的矿石在冶炼之前,必须经过选矿工艺,将主要金属矿物的含量富集几倍、几十倍乃至几百倍才能满足冶炼工艺的要求。

通过选矿手段为冶炼提供“精料”,减少冶炼的物料量,大大提高冶炼的技术经济指标。在选矿过程中大量的废石被排除,减少了炉渣量,一方面减低了能耗和运输成本,同时也相应地减少了炉渣中的金属损失,大大提高了冶炼的回收率。例如,某冶炼厂将铜精矿含量提高1%,每年可多生产粗铜 3135吨。某钢铁公司将铁精矿含量提高 1%,高炉产量提高 3%,节约石灰石 4%~ 5%,减少炉渣量 1.8%~ 2%。目前,我国要求入炉炼铁磁铁矿含量在 65%以上,如果铁精矿含量达到 68%以上,可以采用直接炼钢工艺,大大简化冶炼流程。

通过选矿工艺可以减少冶炼原料中有害元素的危害,变害为利,综合回收金属资源。自然界中的矿石往往含有多种有用成分,例如,铜、铅、锌等有色金属往往共生或伴生于同一矿床中;铁既有单一的铁矿石,也有铁-铜、铁-硫、钒钛铁等共生矿石。冶炼过程中对原料中某些共生或伴生元素,常视为有害杂质。例如,炼铜的原料中含铅、锌都是有害杂质。炼铁原料中含硫、磷和其他有色金属都是有害杂质。但将这些杂质提前通过选矿工艺使之分离分别富集后,分别冶炼,变害为利。

选矿也作为冶炼工艺中的一个中间过程,用以提高选矿、冶炼两个过程的总的经济效益。例如,我国金川有色金属公司冶炼厂现有的生产流程是将铜-镍混合精矿用电炉熔炼、转炉吹炼,产出高冰镍,经过缓冷后,再破碎磨矿,用浮选法获得铜精矿和镍精矿,用磁选法得到合金。此后分别进入各自的冶炼系统提取金属铜、镍和贵金属。

选矿是冶金、化工、建材等工业部门必不可少的极其重要的一环。选矿技术的发展,大大地扩大了工业原料基地,从而使那些以前因为含量太低或成分复杂而不能在工业上应用的矿床变为有用矿床。

近 20多年来,随着科学技术和经济建设的迅猛发展,对矿产资源的需求量与日俱增,矿产资源开采量翻番,周期愈来愈短,易采易选的单一富矿愈来愈少,嵌布粒度细、含量低的难选复合矿的开采量愈来愈大,对矿产品加工过程中的环保要求越来越高,这些都需要通过选矿方法来解决。

(二)选矿方法

目前常用的选矿方法主要是重选、浮选、磁选和化学选矿,除此而外还有电选、手选、摩擦选矿、光电选矿、放射性选矿等。

重力选矿法(简称重选法),是根据矿物密度的不同及其在介质(水、空气、重介质等)中具有不同的沉降速度进行分选的方法,它是最古老的选矿方法之一。这种方法广泛地用来选别煤炭和含有铂、金、钨、锡和其他重矿物的矿石。此外,铁矿石、锰矿石、稀有金属矿、非金属矿石和部分有色金属矿石也采用重选法进行选别。

磁选法,是根据矿物磁性的不同进行分选的方法。它主要用于选别铁、锰等黑色金属矿石和稀有金属矿石。

浮游选矿法(简称浮选法),是根据矿物表面的润泽性的不同选别矿物的方法。目前浮选法应用最广,特别是细粒浸染的矿石用浮选处理效果显著。对于复杂多金属矿石的选别,浮选是一种最有效的方法。目前绝大多数矿石可用以浮选处理。

化学选矿法,基于矿物和矿物组分的化学性质的差异,利用化学方法改变矿物组成,然后用相应方法使目的组分富集的矿物加工工艺。目前对氧化矿石的处理效果非常明显,也是处理和综合利用某些贫、细、杂等难选矿物原料的有效方法之一。

电选法是根据矿物电性的不同来进行选别的方法。

手选法是根据矿物颜色和光泽的不同来进行选别的方法。

摩擦选矿是利用矿物摩擦系数的不同对矿物进行分选的方法。

光电选矿是利用矿物反射光的强度不同对矿物进行选别的方法。

放射性选矿是利用矿物天然放射性和人工放射性对矿物进行选别的方法。

(三)选矿过程

选矿是一个连续的生产过程,由一系列连续的作业组成,表示矿石连续加工的工艺过程为选矿流程(图 6-7-1)。

矿石的选矿处理过程是在选矿厂里完成的。不论选矿厂的规模大小(小型选矿厂日处理矿石几十吨,大型选矿厂日处理矿石量高达数万吨以上),但无论工艺和设备如何复杂,一般都包括以下三个最基本的过程。

选别前的准备作业:一般矿石从采矿场采出的矿石粒度都较大,必须经过破碎和筛分、磨矿和分级,使有用矿物与脉石矿物、有用矿物和无用矿物相互分开,达到单体分离,为分选作业做准备。

选别作业:这是选矿过程的关键作业(或称主要作业)。它根据矿物的不同性质,采用不同的选矿方法,如浮选法、重选法、磁选法等。

产品处理作业:主要包括精矿脱水和尾矿处理。精矿脱水通常由浓缩、过滤、干燥三个阶段。尾矿处理通常包括尾矿的储存和尾水的处理。

有的选矿厂根据矿石性质和分选的需要,在选别作业前设有洗矿,预先抛废(即在较粗的粒度下预先排出部分废石)以及物理、化学与处理等作业,如赤铁矿的磁化焙烧等作业。

(四)选矿技术在新疆矿山的应用

新疆应用选矿技术可追溯到古代,新疆远在 300年前,就在阿勒泰地区的各个沟内利用金的比重大的特点,从砂金矿中淘洗黄金,这就是重选的原始雏形。但在新中国成立之前,新疆没有一处正规的选矿厂,全部都是采用人工方式手选和手淘,生产效率极其低下,只能处理比重差异大的砂金矿和根据颜色手选出黑钨矿石。新中国成立后,新疆选矿技术有了长足的发展,磁选技术应用于铁矿山,建成年处理量 80万吨的磁选矿厂,为钢铁企业源源不断地提供高品质的铁精粉。浮选应用于铅锌矿、铜矿、金矿山,先后建成康苏铅锌浮选厂、喀拉通克铜镍浮选厂、哈图金浮选厂,促进了新疆有色工业的发展。重选、浮选、磁选联合应用于新疆北部阿勒泰地区的稀有金属矿山,为我国的早期国防建设提供所需的锂、铍、钽、铌等稀有金属资源。以下是目前新疆有代表性的选矿厂。

1.康苏铅锌矿浮选选矿

康苏选矿厂是新疆第一座机械化浮选厂,1952年开始建设,设计生产规模为 250吨/天,1954年投产。该厂是由前苏联专家参与指导设计,前期主要处理喀什地区沙里塔什的方铅矿和闪锌矿,1961年开始处理乌拉根氧化铅锌矿。康苏选厂最初投产时是采用苏联专家设计的流程和药剂制度进行浮选,流程采用氰化物与硫酸锌作闪锌矿的抑制剂,以苏打作 pH值的调整剂,并添加了少量的硫化钠,先将铅矿优先选出后,再将锌矿物选出。该流程没有取得较好的经济指标,大部分锌矿被选入铅矿中。后经过我国工程技术人员和苏联专家的共同努力,通过几次技术改造,在流程结构、技术参数和生产管理方面进行了革新和改进。将部分德国式的浮选机改成苏式米哈诺贝尔 5A型充气量大的浮选机,使用水力旋流器代替螺旋分级机,加强了中矿再磨循环,增加了锌浮选时间,降低了锌浮选矿浆碱度,合理控制破碎粒度和钢球装入量,严格贯彻技术操作规程和技术监督等。使各项指标得到稳步提升。铅回收率由 71%提高到 90%,锌回收率由 13%提高到 41%。其选矿过程见浮选工艺流程图(图 6-7-2)。

2.新疆八一钢铁厂磁铁矿浮磁选选矿

新疆八一钢铁选矿厂与 1989年建成投产,设计处理能力 80万吨/年,主要处理高硫磁铁矿。矿石由矿山采出后,运输到选矿厂,经两段破碎一段磨矿后,矿浆进入浮-磁车间。选出的硫精矿销售给新疆境内的一些化工厂和化肥厂,铁精矿供球团和烧结使用。尾矿浓缩后,用水隔泵输送至尾矿库,晾干后,一部分尾矿成为八钢西域水泥厂铁质校正原料。新疆八一钢铁厂简易浮磁选流程图(图 6-7-3)。

3.喀拉通克铜镍矿浮选选矿

喀拉通克铜镍矿是新疆目前最大的铜镍生产基地,矿山一期为采冶工程,采出的特富矿块直接进入鼓风炉熔炼成低冰镍,经过几年的生产特富矿逐渐减少。为充分利用矿产资源,在二期改造中增加了优先选铜-铜镍混合浮选流程,日处理原矿 900吨。

原矿直接从采场经竖井提升到地面,通过窄轨输送到原矿仓,原矿仓的矿石经群式给矿机由带式输送机送至中间矿仓。经重型板式给矿机、带式输送机,送至自磨机进行一段磨矿,自磨机排矿给入与格子型球磨机闭路的高堰式双螺旋分级机,进行二段磨矿。分级机溢流经砂泵扬送至水力旋流器组,沉砂进入溢流型球磨机,进行三段磨矿。三段磨矿排矿与第一段分级机溢流合并,经砂泵扬送至水力旋流器组,旋流器溢流,自流至浮选厂房的搅拌槽内,加药后进入浮选作业。浮选采用一次铜粗选、一次铜精选、一次铜镍混合浮选、一次铜镍扫选、三次铜镍精选后,产出铜精矿、铜镍混合精矿及尾矿,分别送至脱水厂房。铜精矿、铜镍混合精矿经过脱水后分别送入铜精矿库和冶炼厂原料库。浮选尾矿经高效浓密机脱水后,用泵杨送至采矿场充填站,作为充填原料。喀拉通克铜镍矿简易选矿工艺流程图(图 6-7-4)。

4.哈图金矿黄金混汞-浮选选矿

哈图矿区是新疆历史上有名的岩金产地,早在乾隆年间便开始开采,主要采用的是土法重选法,将采出的矿石用石碾盘碾碎,通过淘洗的方式回收比重大的金粒。大量的细粒金无法回收,致使许多淘金者亏损严重。

1983年通过实验研究,采用“混汞—浮选—部分焙烧—氰化”原则流程,哈图金矿建成了新疆第一座现代化的黄金生产矿山,日处理原矿 100吨。1986年通过改进破碎工艺,新增 100吨/天的浮选系列,使产能达到 200吨/天。哈图金矿混汞浮选工艺流程图(图 6-7-5)。

原矿由采厂通过汽车运到原矿仓,原矿经颚式破碎机进行一段破碎。然后经皮带运输机运到圆锥破碎机,进行二段破碎,破碎产物由圆振筛筛分后,筛下矿物由皮带运输机运送至粉矿仓,筛上矿物返回圆锥破碎机再破。粉矿仓经给矿机和皮带运输机送至格子型球磨机磨矿,磨矿排矿自流通过镀银铜板(俗称汞板)进行混汞作业,通过汞板表面粘附的汞吸附单体解理的金形成汞齐,通过冶炼回收部分黄金。矿浆经过汞板后,用高堰式螺旋分级机,溢流进入浮选工序,返砂进入球磨机再磨。浮选工序采用一次粗选、二次精选、一次扫选流程选的浮选精矿。浮选精矿脱水经过焙烧和进行冶炼后得到金锭。

5.可可托海稀有金属矿重、磁、电、浮联合选矿

可可托海以稀有金属储量大,品种多而闻名中外,铍、锂、钽、铌、铷、铯、锆、铪等稀有元素在许多矿带中均有不同程度的分布,因而造成选矿上的复杂性和难度。经过众多科技人员 10年的反复实验研究,从手工选矿到单一矿物选矿,发展到最后的重磁浮联合选矿流程,分选出锂精矿、铍精矿、钽铌精矿,突破了这一世界性的难题,促进了选矿技术的发展。

1953年,为回收绿柱石和钽铌矿在 3号矿脉小露天采场东北角兴建了一座简易的 30多米长的手选室,改善了手选的工作环境,提高了手选效率。另外,在 3号矿脉尾矿堆附近兴建了一座 20吨/天的钽铌重选厂,采用对滚一段破碎、跳汰、摇床、溜槽进行重选,回收钽铌矿。1957~ 1958年,将手选筛下的尾矿,用方螺旋溜槽进行富集,每年产出的氧化锂精矿接近万吨。

1963年,经过科研院所近 8年的选矿试验研究,国家计委批准兴建 750吨/天的选矿厂(“87- 66”机选厂),综合回收氧化锂精矿和钽铌精矿。选厂工艺流程简图(图 6-7-6)。根据可可托海矿伟晶岩体分带开采的特点,选厂采用三个系统分别对三种类型的矿石(铍矿石、锂矿石、钽铌矿石)进行选别。采用联合选矿工艺综合回收矿石中的锂铍钽铌矿物。先利用重力-磁法-电磁法选矿,从原矿含量只有 0.01%~ 0.02%(Ta、Nb)203的原矿中选50%以上的(Ta、Nb)203钽铌精矿,然后再用碱法锂铍优先浮选,先优浮选锂再选铍。

可可托海选厂选矿工艺的不断改进,使我国花岗伟晶岩类型矿石钽铌、锂、铍选矿工艺水平进入世界先进行列。

6.选矿技术的发展方向

在美国、日本、德国等国家对选矿技术的发展非常重视,选矿技术的不断进步和创新,促进了这些国家矿产资源的开发和综合利用沿着可持续发展前进。在矿物破碎方面,美国开发了超细破碎机和高压对滚机,降低球磨机入料粒度,节约了能耗。同时在不断研究外加电场、激光、微波、超声、高频振荡、等离子处理矿石对粉碎和分选的影响。在矿物分选方面,已经或正在研究“多种力场”联合作用的分选设备,并不断将高技术引入选矿工程领域,诸如将超导技术引入磁选,将电化学及控制技术引入浮选等。在选矿工艺管理方面,将工艺控制过程自动化,并将“专家控制系统”与“最优适时控制”相结合,以达到根据矿石性质调整控制参数,使选矿生产工艺流程全过程保持最优状态。

随着我国国民经济的快速发展,对矿产品的需求不断增长,选矿工程技术面临着资源、能源、环保的严峻挑战和发展机遇。以下领域的技术创新将是今后选矿的发展方向:

一是研究开发高效预选设备、高效节能新型破磨与分选设备,以及固液分离新技术与装备,大幅降低矿石粉碎固液分离过程的能耗。

二是研究各种能场的预处理对矿物粉碎和分选行为的影响,开发利用各种能场的预处理新技术,以提高粉碎效率和分选精度。

三是开发高效分选设备、高效无毒的新药剂,重点研究复合力场分选新设备、多种成分协同作用的新药剂以及处理贫、细、杂难选矿石的综合分选新技术。

四是在矿石综合利用研究中,开发无废清洁生产工艺,加强尾矿中矿物的分离、提纯、超细、改性的研究,使其成为市场需要的产品,为矿物物料工业向矿物材料工业转化提供新技术。

五是大力将高新技术引进矿物工程领域,重点开展矿物生物工程技术、电化学调控和电化学控制浮选技术、过程自动寻优技术,以及高技术改造传统产业的新技术研究。

六是加强基础理论与选矿技术相结合的新型边缘科学研究,促进新一代矿物分选理论体系的形成,并派生出新兴的矿物分选和提纯技术。

参考资料:金属回收