首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
高压浸出 2024-09-30 20:35:35

钠离子电池回收(离子液体回收金属)

一、钠离离子晶体和离子液体的电池比较

离子晶体

离子间通过离子键结合形成的晶体。在离子晶体中,回收阴、离液阳离子按照一定的收金属格式交替排列,具有一定的钠离几何外形,例如NaCl是电池正立方体晶体,Na+离子与Cl-离子相间排列,回收每个Na+离子同时吸引6个Cl离子,离液每个Cl-离子同时吸引6个Na+。收金属不同的钠离离子晶体,离子的电池排列方式可能不同,形成的回收晶体类型也不一定相同。离子晶体中不存在分子,离液通常根据阴、收金属阳离子的数目比,用化学式表示该物质的组成,如NaCl表示氯化钠晶体中Na+离子与Cl-离子个数比为1∶1, CaCl2表示氯化钙晶体中Ca2+离子与Cl-离子个数比为1∶ 2。

离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。离子晶体具有较高的熔、沸点,常温呈固态;硬度较大,比较脆,延展性差;在熔融状态或水溶液中易导电;大多数离子晶体易溶于水,并形成水合离子。离子晶体中,若离子半径越小,离子带电荷越多,离子键越强,该物质的熔、沸点一般就越高,例如下列三种物质,其熔沸点由低到高排列的顺序为,KCl<NaCl<MgO。

由正、负离子或正、负离子集团按一定比例组成的晶体称作离子晶体。离子晶体中正、负离子或离子集团在空间排列上具有交替相间的结构特征,离子间的相互作用以库仑静电作用为主导。离子晶体整体上的电中性,决定了晶体中各类正离子带电量总和与负离子带电量总和的绝对值相当,并导致晶体中正、负离子的组成比和电价比等结构因素间有重要的制约关系。离子晶体有二元离子晶体、多元离子晶体与有机离子晶体等类别。几乎所有的盐类和很多金属氧化物晶体都属离子晶体,例如食盐、氟化钙、二氧化钡等。

离子液体

离子液体是由带正电的离子和带负电的离子构成,它在负100摄氏度至200摄氏度之间均呈液体状态。北爱尔兰皇后大学离子液体研究中心主任赛顿说,从理论上讲离子液体可能有1万亿种,化学家可以从中选择适合自己工作需要的离子液体。与典型的有机溶剂不一样,离子液体一般不会成为蒸汽,所以在化学实验过程中不会产生对大气造成污染的有害气体,而且使用方便。更能引起化学家感兴趣的是,离子液体可以反复多次使用。此外,用离子液体做催化剂还可加速化学反应的过程。英国石油公司化学家莫兰说,如果英国石油公司在化工生产过程中采用离子液体,则可减少使用挥发性大的有机溶剂,降低对环境的污染,减少废物的产生。

早在19世纪,科学家就在研究离子液体,但当时没有引起人们的广泛兴趣。20世纪70年代初,美国空军学院的科学家威尔克斯开始倾心研究离子液体,以尝试为导弹和空间探测器开发更好的电池。在研究中他发现,一种离子液体可用做电池的液态电解质。到了20世纪90年代末,已有许多科学家参与离子液体的研究。去年4月有50多人参加了有关离子液体的研讨会,而今年4月美国化学会召开的离子液体会议就有275人参加,会议同时收到了80篇论文。

离子液体的发明者梅斯等人最近发现,离子液体不仅是一种绿色溶剂,它还可用作新材料生产过程中的酶催化剂。威尔克斯最近还发现,离子液体还可以用于处理废旧轮胎,回收其中的聚合物。科学家最近的研究成果还表明,用离子液体可有效地提取工业废气中的二氧化碳。

与典型的有机溶剂不一样,在离子液体里没有电中性的分子,100%是阴离子和阳离子,在负100摄氏度至200摄氏度之间均呈液体状态,具有良好的热稳定性和导电性,在很大程度上允许动力学控制;对大多数无机物、有机物和高分子材料来说,离子液体是一种优良的溶剂;表现出酸性及超强酸性质,使得它不仅可以作为溶剂使用,而且还可以作为某些反应的催化剂使用,这些催化活性的溶剂避免了额外的可能有毒的催化剂或可能产生大量废弃物的缺点;离子液体一般不会成为蒸汽,所以在化学实验过程中不会产生对大气造成污染的有害气体;价格相对便宜,多数离子液体对水具有稳定性,容易在水相中制备得到;离子液体还具有优良的可设计性,可以通过分子设计获得特殊功能的离子液体。总之,离子液体的无味、无恶臭、无污染、不易燃、易与产物分离、易回收、可反复多次循环使用、使用方便等优点,是传统挥发性溶剂的理想替代品,它有效地避免了传统有机溶剂的使用所造成严重的环境、健康、安全以及设备腐蚀等问题,为名副其实的、环境友好的绿色溶剂。适合于当前所倡导的清洁技术和可持续发展的要求,已经越来越被人们广泛认可和接受。

离子液体已经在诸如聚合反应、选择性烷基化和胺化反应、酰基化反应、酯化反应、化学键的重排反应、室温和常压下的催化加氢反应、烯烃的环氧化反应、电化学合成、支链脂肪酸的制备等方面得到应用,并显示出反应速率快、转化率高、反应的选择性高、催化体系可循环重复使用等优点。此外,离子液体在溶剂萃取、物质的分离和纯化、废旧高分子化合物的回收、燃料电池和太阳能电池、工业废气中二氧化碳的提取、地质样品的溶解、核燃料和核废料的分离与处理等方面也显示出潜在的应用前景。

从理论上讲离子液体可能有1万亿种,化学家和生产企业可以从中选择适合自己工作需要的离子液体。目前,对离子液体的合成与应用研究主要集中在如何提高离子液体的稳定性,降低离子液体的生产成本,解决离子液体中高沸点有机物的分离以及开发既能用作催化反应溶剂,又能用作催化剂的离子液体新体系等领域。随着人们对离子液体认识的不断深入,相信离子液体绿色溶剂的大规模工业应用指日可待,并给人类带来一个面貌全新的绿色化学高科技产业。

离子液体的优点:

一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题;

二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积;

三、可操作温度范围宽(-40~300摄氏度),具有良好的热稳定性和化学稳定性,易与其他物质分离,可以循环利用;

四、表现出 Lewis、Franklin酸的酸性,且酸强度可调。

上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。

二、离子液体的应用

离子液体(或称离子性液体)是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐(室温离子液体常伴有氢键的存在,定义为室温熔融盐有点勉强)、有机离子液体等,尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。

应用

由于离子液体所具有的独特性能,它被广泛应用于化学研究的各个领域中。离子液体作为反应的溶剂已被应用到多种类型反应中。

氢化反应

将离子液体应用于氢化反应已有大量的报道,反应中应用离子液体替代普通溶剂优点是:反应速率比普通溶剂中快几倍;所用的离子液体和催化剂的混合液可以重复利用。研究表明,在过程中离子液体起到溶剂和催化剂的双重作用。

由于离子液体能溶解部分过渡金属,因而在氢化反应中运用离子液体研究最多的是用过渡金属配合物作为催化剂的均相反应体系。另外,相对于传统溶剂来说,将离子液体运用于柴油(主要是针对其中含有的芳烃)的氢化反应时具有产品易于分离、易纯化,又不会造成环境污染等优点。

傅-克反应

傅-克反应包括傅-克酰基化和傅-克烷基化反应,这两种类型的反应在有机化工中具有举足轻重的地位。比较成熟的催化剂有沸石、固体酸和分子筛等。但是出于绿色合成和成本的考虑,许多化学工作者已改传统溶剂为离子液体进行相关研究。

例如,Seddon等利用离子液体研究了两可亲核试剂吲哚和2-萘酚的烷基化反应,该方法简单、产品易于分离,杂原子上的区域选择性烷基化产率在90%以上,而且溶剂可以回收再利用,显示了离子液体作为烷基化反应的溶剂时所具有的优势。

1972年,Parshall就研究了在四已胺三氯锡酸盐中乙烯的羰基化反应。近些年来,化学工作者在此方面做出了较多的努力。例如我国化学工作者邓友全等在烷烃的羰基化方面作了相关的研究。他们首次报道了几种烷烃在卤化1-烷基吡啶和1-甲基-3-烷基咪唑盐与无水AlCl3组成的超强酸性室温离子液体中与CO的直接羰基化反应,产物为酮。

Heck反应

Heck反应即烯烃和卤代芳烃或芳香酐在催化剂(如金属钯)的作用下,生成芳香烯烃的反应,这在有机合成中是一个重要的碳-碳结合反应。离子液体应用于此类反应中能较好地克服传统反应存在的催化剂流失、所使用的有机溶剂挥发等问题。2000年,Vincenzo等报道了将离子液体应用于Heck反应后,该反应的反应速率很快,而且收率提高到90%以上Seddon等研究小组在三相系统[BMIM(1-丁基-3-甲基咪唑)]PF6/水/己烷中进行了Heck反应的研究,所用的催化剂留在离子液体中,可以循环使用,而产品溶解在有机层内,反应形成的副产物被提取到水相中,容易分离。

Diels-Alder反应

Diels-Alder反应是有机化学中的一个重要反应,人们对该反应的注意点不仅是其产率和速率,更重要的是其立体选择性。将离子液体应用于Diels-Alder反应研究方面,已有大量的报道。如Howarth等研究小组报道了在咪唑盐室温离子液体中环戊二烯与烯醛类物质反应进行的情况。研究发现,在离子液体中进行时该反应的立体选择性较好,即得到的内外型产物的比例约在95:5左右。研究都发现,在离子液体中进行的该反应不但反应速度快,反应产率高,反应的立体选择性好,而且离子液体可以回收重新使用。这说明,离子液体在Diels-Alder反应方面比普通溶剂具有更大的优势。

不对称催化

研究表明,将离子液体应用于不对称催化反应,对映体的选择性相对于普通溶剂有很大的提高,而且解决了传统方法中产物不易从体系中分离出来这一难题。将离子液体应用于不对称催化反应中已有大量的报道,如Chen研究组报道了将离子液体应用于不对称烯丙基烷基化反应中;Song研究组则将离子液体应用于不对称环氧化反应中;Wasserschied等报道了从“手性池”(chiral pool)衍生的新型手性离子液体的合成和特性,我们相信这些手性离子液体的合成对于研究不对称催化反应尤其在手性药物合成方面将会有重大意义。

生产应用

1、利用高离子传导性、广电位窗的用途

(1)电容、燃料电池、色素增感型太阳电池等的电解质

(2)锂电池等二次电池用电解液

2、利用不挥发性、高耐热性、不燃性的用途

(1)宇宙、真空下的媒体

(2)因为不燃性、不挥发性,安全性高的高温热媒

(3)可再利用的反应溶媒(干净溶媒)

(4)轴承等润滑剂

三、离子液体有什么用途

查了很多网,都很笼统地解答了离子液体的用途。感觉是个很虚无的材料。实际应用很窄。鄙人也就做了一些关于吸附CO2的聚离子液体,绿色化学材料,但看着是个讲不出高大上故事的材料。

未来的溶剂--离子液体

离子液体(Ionic liquids)是完全由离子组成的液体,是低温(<100℃)下呈液态的盐,也称为低温熔融盐,它一般由有机阳离子和无机阴离子所组成。早在1914n就发现了第一个离子液体―硝基乙胺,但其后此领域的研究进展缓慢,直到1992n,Wikes领导的研究小组合成了低熔点、抗水解、稳定性强的1-乙基-3-甲基咪唑四氟硼酸盐离子液体([EMIM]BFa)后,离子液体的研究才得以迅速发展,随后开发出了一系列的离子液体体系。最初的离子液体主要用于电化学研究,近年来离子液体作为绿色溶剂用于有机及高分子合成受到重视。

离子液体的应用:

常温离子液体在 Friedel-Crafts反应、Diels-Alder反应、Heck反应、氧化反应、加氢反应、异构化反应、低聚反应、烷基化反应、!基化反应、烯丙基化反应等重要有机合成的应用研究已经起步,它在核废料处理、重离子萃取、新型电解质等其他方面的应用也已显端倪。可以说,作为一种新颖功能材料,常温离子液体不仅给化学化工提供了一个全新的研究领域,而且将给相关的其他工业的可持续发展带来突破性进展。

行业发展趋势

1.新兴行业,具有环保严苛、规模化生产技术等准入门槛

离子液体相对来说属于新兴行业,市场打开后会有较多进入者,环保要求的严格可限制部分企业进入,而产品本身对技术、规模化生产的能力亦能限制很多企业的进入。

2.市场处于培育阶段,大部分应用市场待开发

离子液体市场被国际巨头把控,且不直接对外销售,国内企业暂不具备大规模量产能力,市场处于培育阶段,大部分应用市场待开发,对企业的研发投入以及技术迭代要求较高。

绿色催化剂,被称为“未来的溶剂”

离子液体是低温或室温熔融盐,可作为绿色催化剂和溶剂,实际应用时可根据使用条件设计合成出具备特殊功能的离子液体新材料,因此被称为“未来的溶剂”。

材料简介

离子液体(Ionic Liquid)又称室温离子液体、室温熔融盐或有机离子液体等,是由有机阳离子和无机阴离子组成,在100℃以下呈液体状态的盐类。大多数离子液体在室温或接近室温的条件下呈液体状态,并且在水中具有一定程度的稳定性。

由于有机阳离子与无机阴离子的多样性,通过改变配比组合可设计合成出具备特殊功能的离子液体新材料,因此被称为“未来的溶剂”。离子液体无味、不支持燃烧、蒸汽压小且很难挥发、易回收,在工业使用中无有害气体产生,是传统有机溶剂的良好替代品。与传统常规容积相比在热稳定性、导电性方面具有独特的优势。

应用领域

石油产品脱硫、核污染废料处理、润滑材料、太阳能工业、电池材料、人造肌肉…

参考资料:浮选专家系统