首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
智能化选矿 2024-09-30 18:36:52

A型恒星(恒星回收金属)

一、恒星恒星回收恒星的金属资料

恒星是由炽热气体组成的,是恒星恒星回收能自己发光的球状或类球状天体。由于恒星离我们太远,金属不借助于特殊工具和方法,恒星恒星回收很难发现它们在天上的金属位置变化,因此古代人把它们认为是恒星恒星回收固定不动的星体。我们所处的金属太阳系的主星太阳就是一颗恒星。

演化

恒星结构

恒星都是恒星恒星回收气体星球。晴朗无月的金属夜晚,且无光污染的恒星恒星回收地区,一般人用肉眼大约可以看到6000多颗恒星,金属借助于望远镜,恒星恒星回收则可以看到几十万乃至几百万颗以上。金属估计银河系中的恒星恒星回收恒星大约有1500-2000亿颗,我们所处的太阳系的主星太阳就是一颗恒星。[1]

恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾依纳尔·赫茨普龙(Einar Hertzsprung)和美国的享利·诺里斯·罗素(Henry Norris Russell)各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域;在主星序中,恒星的绝对星等增加时,

恒星的演变

其表面温度也随之增加。90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上;白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方。

恒星演化是一个恒星在其生命期内(发光与发热的期间)的连续变化。生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。

天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关

恒星——赫罗图

系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。在主星序区之上是巨星和超巨星区;左下为白矮星区。

恒星是大质量、明亮的等离子体球。太阳是离地球最近的恒星,也是地球能量的来源。白天由于有太阳照耀和地球大气散射太阳光,无法看到其他的恒星;只有在夜晚的时间,才能在天空中看见其他的恒星。恒星一生的大部分时间,都因为核心的核聚变而发光。核聚变所释放出的能量,从内部传输到表面,然后辐射至外太空。几乎所有比氢和氦更重的元素都是在恒星的核聚变过程中产生的。恒星天文学是研究恒星的科学。

天文学家经由观测恒星的光谱、光度和在空间中的运动,可以测量恒星的质量、年龄、金属量和许多其他的性质。恒星的总质量是决定恒星演化和最后命运的主要因素。其他特征,包括直径、自转、运动和温度,都可以在演变的历史中进行测量。描述许多恒星的温度对光度关系的图,也就是赫罗图(HR图),可以测量恒星的年龄和演化的阶段。

恒星诞生于以氢为主,并且有氦和微量其他重元素的云气坍缩。一旦核心有足够的密度,有些氢就可以经由核聚变的过程稳定的逐渐转换成氦[1]。恒星内部多余的能量经过辐射和对流组合的携带作用传输出来;恒星内部的压力则阻止了恒星在自身重力下的崩溃。一旦在核心的氢燃料耗尽,质量不少于0.5太阳质量,不大于1.4倍太阳质量的恒星[2],将膨胀成为红巨星,在某些情况下更重的化学元素会在核心或包围着核心的几层燃烧。这样的恒星将发展进入简并状态,部分被回收进入星际空间环境的物质,将使下一代恒星诞生时正元素的比例增加[3]。

恒星并非平均分布在星系之中,多数恒星会彼此受引力影响而形成聚星,如双星、三合星、甚至形成星团等由数万至数百万计的恒星组成的恒星集团。当两颗双星的轨道非常接近时,其引力作用或会对它们的演化产生重大的影响,例如一颗白矮星从它的伴星获得吸积盘气体成为新星。

千奇百怪的恒星(13张)

形成

在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。

星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。这就是星坯演化的主要物理机制。

最新观测发现S1020549恒星

下面我们利用经典引力理论大致的讨论这一过程。考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:

ET= RT= T

(1)将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数

为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。当球质量为m,半径为r时,从表面移走dm过程中场力做功:

dW=-=-G()1/3m2/3dm

(2)所以:-Eg=-()1/3m2/3dm= G( M5/3

于是:Eg=-(2),[1]

气体云的总能量:E=ET+EG(3)

灵魂星云将形成新的行星

热运动使气体分布均匀,引力使气体集中。两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。由E≤0得到产生收缩的临界半径:

(4)相应的气体云的临界质量为:

(5)原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。

我们已知:太阳质量:MΘ=2×10^33,半径R=7×10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能

太阳的总光度L=4×10^33erg.s-1如果这个辐射光度靠引力为能源来维持,那么持续的时间是:

很多证明表明,太阳稳定的保持着今天的状态已有5×10^9年了,因此,星坯阶段只能是太阳形成像今天这样的稳定状态之前的一个短暂过渡阶段。这样提出新问题,星坯引力收缩是如何停止的?此后太阳辐射又是以什么为能源?

稳定期

主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星,恒星的演化是从主序星开始的。

哈勃观测到两颗燃烧剧烈的超级恒星

恒星的成份大部分是H和He,当温度达到104K以上,即粒子的平均热动能达1eV以上,氢原子通过热碰撞就充分的电离了(氢的电离能是13.6eV),在温度进一步升高后,等离子气体中氢核与氢核的碰撞就可能引起核反应。对纯氢的高温气体,最有效的核反应系列是所谓的P-P链:

其中主要是2D(p,γ)3He反应。D(氘,氢的同位素,由一个质子和一个中子组成)含量只有氢的10-4%左右,很快就燃完了(其原理与现代氢弹武器类似)。如果开始时D比3He(氦3,氦的同位素,由2个质子和1个中子组成)含量多,则反应生成的3H(氚,氢的同位素,由1个质子和2个中子组成,衰变会变成氦3)可能就是恒星早期3He的主要来源,由于对流到达恒星表面的这种3He,有可能还保留着。

Li,Be,B等轻核和D一样结合能很低,含量只是H的2×10-9K左右,当中心温度超过3×106K就开始燃烧,引起(p,α)和(p,α)反应,很快成为3He和4He。中心温度达到107K,密度达到 105kg/m3左右时,产生的氢转化为He的41H→4He过程。这主要是p-p和CNO循环。同时含有1H和4He是发生p-p链反应,有以下三个分支组成:

p-p1(只有1H) p-p2(同时有1H、4He) p-p3

或假设1H和4He的重量比相等。随温度升高,反应从p-p1逐渐过渡到p-p3,

而当T>1.5×107K时,恒星中燃烧H的过程就可过渡到以CNO循环为主了。

当恒星内混杂有重元素C和N时,他们能作为触媒使1H变为4He,这就是CNO循环,CNO循环有两个分支:

或总反应率取决于最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反应分支比约为2500:1。

这个比值几乎与温度无关,所以在2500次CNO循环中有一次是CNO-2。

在p-p链和CNO循环过程中,净效果是H燃烧生成He:

在释放出的26.7MeV能量中,大部分消耗给恒星加热和发光,成为恒星的主要来源。

前面我们提到恒星的演化是从主星序开始的,那么什么是主星序呢?等H稳定地燃烧为He时,恒星就成了主序星。人们发现有百分之八十至九十的恒星都是主序星,他们共同特征是核心区都有氢正在燃烧,他们的光度、半径和表面温度都有所不同,后来证明:主序星的定量上差别主要是质量不同,其次是他们的年龄和化学成份,太阳这段历程约千万年。

观察到的主序星的最小质量大约为0.1M⊙。模型计算表明,当质量小于0.08M⊙时,星体的收缩将达不到氢的点火温度,从而形不成主序星,这说明对于主序星它有一个质量下限。观察到的主序星的最大质量大约是几十个太阳质量。理论上讲,质量太大的恒星辐射很强,内部的能量过程很剧烈,因此结构也越不稳定。但是理论上没有一个质量的绝对上限。

当对某一星团作统计分析时,人们却发现主序星有一个上限,这说明什么?我们知道,主序星的光度是质量的函数,这函数可分段的用幂式表示:

L∝Mν

其中υ不是一个常数,它的值大概在3.5到4.5之间。M大反映主序星中可供燃烧的质量多,而L大反映燃烧的快,因此主序星的寿命可近似用M与L的商标来标志:

T∝M-(ν-1)

即主序星寿命随质量增大而按幂律减小,如果整个星团已存在的年龄为T,那就可以由T与M的关系式求出一个截止质量MT。质量大于MT的主序星已结束核心的H燃烧阶段而不是主序星了,这就是观察到由大量同年龄星组成的星团有上限的原因。

我们就讨论观测到的恒星中大部分是主序星的原因,表1根据一25M⊙的恒燃烧阶段点火温度(K)中心温度(g. cm-3)持续时间(yr)

H 4×107 4 7×106

He 2×108 6×102 5×105

C 7×108 6×105 5×102

Ne 1.5×109 4×106 1

O 2×109 1×107 5×10-2

Si 3.5×109 1×108 3×10-3

燃烧阶段的总寿命7.5×106

星演化模型,列出了各种元素的点火温度及燃烧所持续的时间。从表上看出,原子序数大的核有更高的点火温度,Z大的核不仅难于点火,点火后燃烧也更剧烈,因此燃烧持续的的时间也就更短。这颗25M⊙的表1 25M⊙恒星演化模型,模型星的燃烧阶段的总寿命为7.5×106年,而其中百分之九十以上的时间是氢燃烧阶段,即主星序阶段。从统计角度讲,这表明找到一颗处于主星序阶段的恒星几率要大。这正是观察到的恒星大多数为主序星的基本原因。

晚年

主序后的演化由于恒星形成是它的主要成份是氢,而氢的点火温度又比其他元素都低,所以恒星演化的第一阶段总是氢的燃烧阶段,即主序阶段。在主序阶段,恒星内部维持着稳衡的压力分布和表面温度分布,所以在整个漫长的阶段,它的光度和表面温度都只有很小的变化。下面我们讨论,当星核区的氢燃烧完毕后,恒星有将怎么进一步演化?

恒星在燃烧尽星核区的氢之后,就熄火,这时核心区主要是氦,它是燃烧的产物,外围区的物质主要是未经燃烧的氢,核心熄火后恒星失去了辐射的能源,它便要引力收缩是一个起关键作用的因素。一个核燃烧阶段的结束,表明恒星内各处温度都已低于在该处引起点火所需要的温度,引力收缩将使恒星内各处的温度升高,这实际上是寻找下一次核点火所需要的温度,引力收缩将使恒星内各处的温度全面的升高,主序后的引力收缩首先点着的不是核心区的氦(它的点火温度高的太多),而是核心与外围之间的氢壳,氢壳点火后,核心区处于高温状态,而仍没核能源,它将继续收缩。这时,由于核心区释放的引力位能和燃烧中的氢所释放的核能,都需要通过外围不燃烧的氢层必须剧烈地膨胀,即让介质辐射变得更透明,来排出多余的热能来维持热平衡。而氢层膨胀又使恒星的表面温度降低了,所以这是一个光度增加、半径增加、而表面变冷的过程,这个过程是恒星从主星序向红巨星过渡,过程进行到一定程度,氢区中心的温度将达到氦点火的温度,于是又过渡到一个新阶段--氦燃烧阶段。

在恒星中心发生氦点火前,引力收缩以使它的密度达到了103g. cm-3的量级,这时气体的压力对温度的依赖很弱,那么核反应释放的能量将使温度升高,而温度升高反过来又加剧核反应速率,于是一旦点火,很快就会燃烧的十分剧烈,以至于爆炸,这种方式的点火称为“氦闪光”,因此在现象上会看到恒星光度突然上升到很大,后来又降的很低。

另一方面,当引力收缩时它的密度达不到103g. cm-3量级,此时气体的压力正比于温度,点火温度升高导致压力升高,核燃烧区就会有所膨胀,而膨胀导致温度降低,因此燃烧就能稳定的进行,所以这两种点火情况对演化进程的影响是不同的。

恒星在发生“氦闪光”之后又怎么演变呢?闪光使大量能量的释放很可能把恒星外层的氢气都吹走,剩下的是氦的核心区。氦核心区因膨胀而减小了密度,以后氦就有可能在其中正常的燃烧了。氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是它就结束了以氦燃烧的演化,而走向热死亡。

由于引力塌缩与质量有关,所以质量不同的恒星在演化上是有差别的。

M<0.08M⊙的恒星:氢不能点火,它将没有氦燃烧阶段而直接走向死亡。

0.08<M<0.35M⊙的恒星:氢能点火,氢熄火后,氢核心区将达不到点火温度,从而结束核燃烧阶段。

0.35<M<2.25M⊙的恒星:它的主要特征是氦会点火而出现"氦闪光"。

2.25<M<4M⊙的恒星:氢熄火后氦能正常地燃烧,但熄火后,碳将达不到点火温度。这里的反应有:

在He反应初期,温度达到108K量级时,CNO循环产生的13C,17O能和4He发生新的(α,n)反应,形成16O和20Ne,在He反应进行了很长时间后,20Ne(p,γ) 21Na(β+,ν) 21Na中的21Na以及14N吸收两个4He形成的22Ne能发生(α,n)反应形成24Mg和25Mg等,这些反应作为能源并不重要,但发出的中子可进一步发生中子核反应。

4<M<8→10M⊙的恒星,这是一个情况不清楚的范围,或许碳不能点火,或许出现"碳闪光",或许能正常地燃烧,因为这是最后的中心温度已较高,一些较敏感的因素,如:中微子的能量损失把情况弄得模糊了。

He反应结束后,当中心温度达到109K时,开始发生C,O,Ne燃烧反应,这主要是C-C反应,O-O反应,以及20Ne的γ,α反应:

8→10M⊙<M的恒星:氢、氦、碳、氧、氖、硅都能逐级正常燃烧。最后在中心形成一个不能在释放能量的核心区,核心区外面是各种能燃烧而未烧尽的氢元素壳层。核燃烧阶段结束时,整个恒星呈现由内至外分层(Fe,Si,Mg,Ne,O,C,He,H)结构。

终局

我们已经知道,对质量小于8→10M⊙的恒星,它会因不能到达下一级和点火温度而结束它的核燃烧阶段;对于质量更大的恒星,它将在核心区耗尽燃料之后结束它的核燃烧阶段,在这以后,恒星的最终归宿是什么?

小质量的恒星(如太阳),起先会膨胀,在这个阶段的恒星我们称之为红巨星,然后会塌缩,变成白矮星,辐射、丧失能量,再成为黑矮星,最终消失。

大质量的恒星,≥7个太阳密度(8→10M⊙<M)的恒星则会变成超新星(Super nova),它会选择以超新星爆发的形式结束生命,最终会成为中子星或黑洞(古代有记载,由于超新星光量大,一颗超新星爆发,连续几个月都可以在晚上看书)

一旦停止了核燃烧,恒星必定要发生引力收缩,这是因为恒星内部维持力学平衡的压力是与它的温度相联系的。因此,如果恒星在一?quot;最终"的平衡位形,它必须是一个"冷的"平衡位形,即它的压力与它的温度无关。

主序星核心H耗尽后,离开主序是阶段开始了它最后的历程。结局主要取决于质量。对于质量很小的星体由于质量小,物体内部的自引力并不重要,固体内部的平衡是正负离子间的净库仑引力于电子间的压力来达到平衡的。

当星体质量再大些,直到自引力不可忽略时,这时自引力加大了内部的密度和压力,压力的加大是物质发生压力电离,从而逐渐是固体的电约束瓦解,而过渡为等离子气体。加大质量,即加大密度,此时压力于温度无关,从而达到一种"冷的"平衡位形,等离子体内电子的动能一大足以在物质内部引起β衰变:

这里p是原子核中的质子,这样的反应大致在密度达到108 g. cm-3的时候,它将逐渐地是负离子体中的原子核变为富中子核,原子核中出现过多的中子,导致核结构松散,当密度超过4×1011g. cm-3是中子开始从原子核中分离出来,成为自由中子,自引力于中子间压力达到平衡。如果当质量变大使中子气体间压力已不能抵御物质自引力,而形成黑洞,但由于大多数恒星演化后阶段使得质量小于它的初始质量,例如恒星风,"氦闪光",超新星爆发等,它们会是恒星丢失一个很大的百分比质量,因此,恒星的终局并不是可以凭它的初始质量来判断的,它实际上取决于演化的进程。那么我们可以得出这样的结论。8→10M⊙以下的恒星最终间抛掉它的一部分或大部分质量而变成一个白矮星。8→10M⊙以上的恒星最终将通过星核的引力塌缩而变成中子星或黑洞,也就是说,塌缩的内核质量在太阳1.44倍——到3.2倍的恒星,最终成为中子星,塌缩的内核质量在太阳3.2倍以上的恒星,最终成为黑洞。

观测到的恒星质量范围一般为0.1→60M⊙。质量小于0.08M⊙的天体不能达到点火温度。因此,不发光,不能成为恒星。质量大于60M⊙的天体中心温度过高而不稳定,至今仅发现20个以下。

变星等。

结构

根据实际观测和光谱分析,我们可以了解恒星大气的基本结构。一般认为在一部分恒星中,最外层有一个类似日冕状的高温低密度星冕。它常常与星风有关。有的恒星已在星冕内发现有产生某些发射线的色球层,其内层大气吸收更内层高温气体的连续辐射而形成吸收线。人们有时把这层大气叫作反变层,而把发射连续谱的高温层叫作光球。其实,形成恒星光辐射的过程说明,光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约十分之一半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。

对于光球和对流层,我们常常利用根据实际测得的物理特性和化学组成建立起来的模型进行较详细的研究。我们可以从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。在恒星的中心,温度可以高达数百万度乃至数亿度,具体情况视恒星的基本参量和演化阶段而定。在那里,进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星,并有可能发生脉动。那些内部温度上升到近亿度的恒星,开始发生氦碳循环。在这些演化过程中,恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”(见恒星的形成和演化)。

二、星系如何在数十亿年内不断形成新恒星

星系比我们所看到的更多。在黑暗的太空背景下,星系明亮的恒星似乎平静地旋转着。但仔细一看就会发现很多混乱。

去年1月,西雅图华盛顿大学的天文学家杰西卡·沃克在美国天文学会的一次会议上说:“星系就像你和我一样。他们生活在一种持续的混乱状态中。”

大部分的动荡发生在一个巨大的,复杂的环境中,称为环绕介质(CGM)。这片浩瀚的灰尘和天然气云是星系的燃料来源,废物堆放和回收中心。天文学家认为,星系如何在数十亿年内不断形成新恒星,为什么恒星的形成突然停止,这些最紧迫的星系谜团的答案隐藏在一个星系被包围的环绕介质(CGM)中。

巴尔的摩太空望远镜科学研究所的天文学家莫莉·皮普斯说:“要了解星系,你必须了解它们所在的生态系统。”

然而,这个星系的大气是如此的分散,以至于它是看不见的,一升的环绕介质只包含一个原子。经过近60年的时间,哈勃太空望远镜的升级才开始探测遥远的环绕介质(CGM),并弄清楚它们的不断搅动如何能够制造或破坏星系。

直到最近,我们才能够真正地、真实地观测到这个气体周期与星系本身的性质之间的关系。

有了第一次河外普查,天文学家们现在正在拼凑环绕介质(CGM)是如何控制其星系的生死的。新的理论研究表明,如果没有媒介的疯狂流动,星系的恒星会有非常不同的排列方式。此外,新的观察表明,一些环绕介质(CGM)是惊人的庞大。通过新的望远镜和计算机模拟,对环绕介质(CGM)有了更好的理解,这可能会改变科学家对一切事物的看法,从星系碰撞到我们自己原子的起源。

研究人员使用明亮的背景光源,如类星体,来了解星系周围的环境介质,即星系周围的弥散气体和金属云(图中的粉红色)。气体在星系和CGM之间循环。

等待哈勃望远镜

2009年哈勃望远镜的升级,使得环绕介质(CGM)普查成为可能,但几乎没有发生。

巧合的是,哈勃望远镜的主要拥护者也是第一批发现如何观测星系环绕介质(CGM)的天文学家。普林斯顿大学的莱曼·斯皮策和新泽西州普林斯顿高级研究所的约翰·巴赫尔以及其他天文学家在1963年发现类星体后发现了一些奇怪的东西,这些明亮的信标现在被认为是围绕遥远星系中心超大质量黑洞的热盘。

天文学家到处都看到,类星体的光谱都带有缺口。一些波长的光没有通过。

1969年,斯皮策和巴赫尔意识到了正在发生的事情:丢失的光被星系边缘的气体吸收,这种物质后来被称为环绕介质(CGM)。天文学家们一直在观察类星体,这些类星体通过环绕介质(CGM)发光,就像大灯穿过雾一样。

不过,当时也没什么可做的了。地球大气层也吸收同样波长的光,因此很难分辨出星系的环绕介质(CGM)中有哪些挡光原子,哪些来自离家较近的星系。知道环绕介质(CGM)存在是一回事,测量它需要额外的东西。

斯皮策和巴赫尔知道他们需要什么:一台能够从地球大气层外观测的太空望远镜。

巴赫尔从未停止过对哈勃的倡导。2005年2月,在他死于一种罕见的血液疾病,享年70岁。去世前六个月,他在“洛杉矶时报”上发表了一篇文章,敦促美国国会恢复资助一项修复一些老化的哈勃仪器的任务,美国宇航局在2003年哥伦比亚航天飞机灾难后取消了这项任务。

“这不仅关系到一项恒星技术,而且关系到我们对人类最根本的追求--理解宇宙--的承诺,”巴赫尔和他的同事写道,“哈勃望远镜最重要的发现可能在未来。”

他的请求得到了回应:亚特兰蒂斯号航天飞机在2009年5月最后一次为宇航员修复哈勃望远镜。在修复过程中,宇航员们安装了宇宙起源光谱仪,它可以比以往任何仪器都高出30倍的灵敏度探测到扩散的环绕介质(CGM)气体。虽然哈勃早期的光谱仪每次都能探测到一些类星体光束,但新设备让天文学家利用更暗的类星体的光,在数十个星系周围进行搜索。

由巴尔的摩太空望远镜科学研究所的杰森·托姆林森(Jason Tumlinson)领导的一个团队,从哈勃望远镜的角度,编制了一份44个星系的星表,其中还有一颗类星体。在2011年发表在“科学”杂志上的一篇论文中,研究人员报告说,每次他们观察距离星系49万光年以内的星系时,他们都会看到光谱上贴满了原子吸收光的空白斑点。这意味着环绕介质(CGM)并不是几个星系穿特有的,他们到处都是。

托姆林森的研究小组在哈勃望远镜升级后的头几年里。该小组测量了星系的环绕介质(CGM)的质量和化学组成,发现它们是巨大的重元素蓄水池。仅在氧气中,环绕介质(CGM)就含有1000万倍于太阳质量的物质。在许多情况下,环绕介质(CGM)的质量相当于整个星系可见部分的质量。

这一发现为一个长期存在的宇宙谜团提供了答案:星系如何有足够的恒星形成燃料来维持数十亿年?星系以恒定的速率从塌缩的冷气体云团中形成恒星。例如,银河系每年产生一到两颗质量相当于太阳质量的恒星。但是在星系的可见部分,也就是包含恒星的圆盘内,没有足够的冷气体来支持观测到的恒星形成速率。

“我们认为气体可能来自环绕介质(CGM),”杰西卡·沃克说,“但是,气体究竟是如何进入星系的,它是从哪里进入的,它进入的时间刻度,有什么东西阻止它进入吗?这些都是让我们晚上睡不着觉的大问题。”

沃克和皮普斯意识到,所有这些质量可以帮助解决另外两个宇宙簿记问题。所有重过氦的元素都是由恒星心中的核聚变形成的。当恒星耗尽它们的燃料并以超新星的形式爆炸时,它们会将这些金属分散开来,折叠成下一代恒星。

但是如果你把恒星中的所有金属,气体和尘埃加在一个星系的圆盘上,这还不足以解释这个星系曾经制造过的所有金属。如果把氢、氦、电子和质子,基本上是自大爆炸以来应该在银河系中收集的所有普通物质包括在内,这种失配情况就会变得更糟。天文学家称所有这些为重子。星系似乎丢失了70%到95%的物质。

因此沃克和皮布尔斯领导了一项全面的工作,用哈勃新的光谱仪对大约40个星系中的所有普通物质进行计数。研究人员在2014年的“天体物理学杂志”上发表了两篇论文。

当时,沃克报告说,星系丢失的普通物质中至少有一半可以在它们的环绕介质(CGM)中找到。在2017年的一次更新中,沃克和他的同事发现,星系环绕介质(CGM)中以冷气体形式存在的重子质量可能接近900亿太阳质量。“显然,这种质量可以解决银河系丢失重子的问题。”该小组写道。

研究人员对丢失的材料应该在哪里做了一个假设,并做出了预测。该小组进行了观察,以检验这些预测,并找到了它所寻求的。

在另一项研究中,皮布尔斯发现,虽然金属出生在星系的星盘中,但这些金属并不会留在那里。星系产生的金属中只有20%到25%的金属残留在圆盘中的恒星,气体和尘埃中,金属可以被纳入新的恒星和行星中。其余的可能最终在环绕介质(CGM)中。

托姆林森说:“如果你观察星系在其整个一生中产生的所有金属,其中更多的金属在星系外之外,而不是仍然在银河系内部,这是一个巨大的冲击。”

回收中心。

那么金属是如何进入环绕介质(CGM)的呢?类星体的光谱对这个问题没有帮助。它们的光在某一时刻只显示一片穿过单个星系。但是天文学家可以通过基于恒星和气体行为的物理规则的计算机模拟来追踪星系的生长和发展。

这一策略揭示了星系环绕介质(CGM)中气体的搅动、不断变化的本质。荷兰莱顿大学(Leiden University)推出的“星系及其环境的演化与组装”等模拟研究表明,金属可以通过恒星的猛烈生命到达在环绕介质的:在强大的辐射风中吹离大量的年轻恒星,并在超新星的死亡阵痛中喷射金属。

然而,一旦金属进入环绕介质(CGM),它们并不总是保持不变。在模拟中,星系似乎一次又一次地使用相同的气体。

“这基本上只是引力。”皮普斯说,“把棒球扔起来,它就会回到地上。”从星系流出的气体也是如此:除非气体的传播速度足够快,足以逃离星系的引力极限。否则这些原子最终会回到星系中,形成新的恒星。”

一些模拟显示,离散气体包从一个星系的盘旅行到环绕介质(CGM),然后再返回几次。环绕介质(CGM)和它们的星系一起是巨大的回收装置。

这意味着组成行星、植物和人类的原子在成为我们的一部分之前,可能已经多次进入银河系。在数亿年的时间里,最终成为你们一部分的原子旅行了几十万光年。

“这是我最喜欢的事情,”托姆林森说,“在某种程度上,你的碳、氧、氮、铁都在星系间的空间里。”

星系是如何死亡的。

但并不是所有的星系都能拿回它们的环绕介质(CGM)气体。失去气体可能会永远关闭星系中恒星的形成。没有人知道恒星的形成是如何关闭或停止的。但答案可能在环绕介质(CGM)中。

星系有两种主要的形式:正在形成恒星的年轻螺旋星系,和恒星正在熄灭的古老星系。

托姆林森说:“星系是如何熄灭的,为什么会保持这种状态,这是星系形成过程中最重要的问题之一。这只是与气体供应有关。”

使用来自类星体的光,研究人员可以“看到”CGM。在这个例子中,来自两个星系G1和G2的光谱在CGM原子吸收光的地方某些波长缺失(红色,在底部框中)。

在先前发表的一篇论文提出了一种可能性,那就是超新星加热的气体喷射可能会从星系中剥离出来。威斯康星大学麦迪逊分校的物理学家查德·巴斯塔德(Chad Bustard)和他的同事们模拟了银河系的卫星星系--大麦哲伦星云,发现这个小星系流出的气体被银河系周围运动的轻微压力一扫而空。

或者,死星系的环绕介质(CGM)气体可能太热,无法沉入星系形成恒星。如果是这样的话,恒星形成星系应该有充满冷气体的环绕介质(CGM),而死星系应该被热气体覆盖。热气体会像热气球一样漂浮在星系盘上方,浮力太大,无法下沉形成恒星。

但哈勃却看到了相反的一面。恒星形成的星系中有大量的氧VI--意味着气体非常的热(一百万摄氏度或更高),氧原子失去了它们原来的五个电子。死亡星系的氧含量惊人的少。

2016年,科罗拉多大学博尔德分校的计算天体物理学家本杰明·奥本海默提出了一个解决方案:“死”星系根本不缺氧。这气体太热了,哈勃望远镜无法观测到。事实上,这些被动星系周围甚至有更多的氧气。

所有这些热气体都有可能解释这些星系死亡的原因,除了这些星系也充满了恒星形成的冷气体。

托姆林森说:“死亡的星系有足够的燃料留在油箱里。我们不知道他们为什么不使用它。每个人都在追逐这个问题。”

直到最近,观察者还无法绘制出单个星系的环绕介质(CGM)图。研究人员不得不将几十个类星体束相加,才能平均地了解他们的组成。

使用两种新光谱仪的团队--夏威夷凯克望远镜上的凯克宇宙网络成像仪(KCWI)和智利甚大望远镜上的多单元光谱探测器缪斯,正在竞相改变这种状况。这些仪器被称为积分视场光谱仪,可以同时读取整个星系的光谱。如果有足够的背景光,天文学家现在可以检查单个星系的整个环绕介质(CGM)。最后,天文学家有一种方法来测试气体如何循环进和出星系的理论。

智利圣地亚哥大学的天文学家塞巴斯蒂安·洛佩兹和他的同事们带领的一个智利研究小组,使用缪斯来观测一个小的暗星系,这个星系恰好夹在一个明亮、遥远的星系和一个离地球较近的大星系群之间。星系团作为一个引力透镜,将遥远星系的影像扭曲成一条长而明亮的弧线。来自这条弧线的光在56个不同的点透过穿过夹层星系的环绕介质(CGM)(该小组称其为G1)。

令人惊讶的是,G1的环绕介质(CGM)是不稳定的,不像预期的那样顺利。洛佩兹说:“人们一直认为气体在每个系统中都是均匀分布的。事实并非如此。”

来自源星系的光被中间星系团偏转和放大,形成在最右侧的投影图像中看到的明亮弧。与类星体的狭窄光束不同,广泛的弧形照亮了大部分星系G1的CGM,显示出令人惊讶的细节。

与此同时,皮布尔斯的团队正在重新审视电脑如何呈现环绕介质(CGM)。她说:“在模拟中,环星系介质的分辨率很差。现有的模拟很好地匹配了星系的可见属性--它们的恒星、恒星之间的气体以及整体的形状和大小。但他们完全无法再现银河系介质的特性。”

因此,她正在运行一套名为FOGGIE的新模拟程序,首次将重点放在环绕介质上。“我们发现它改变了一切,”她说:“形状,恒星形成历史,甚至银河系在太空中的方向看起来都不一样。”

总之,新的观测和模拟表明,环绕介质在星系生命周期中的作用被低估了。皮布尔斯等理论家和奥米拉等观察家正在共同努力,对环绕介质的外观做出新的预测。然后,研究人员将检查真正的星系,看看它们是否匹配。

虽然未来的银河系研究将集中于从完整的环绕介质收集光谱,托姆林森希望在他还能从哈勃望远镜中提取更多的信息。哈勃望远镜使环绕介质研究成为可能,但这台望远镜已经使用了28年,可能还剩下不到10年的时间。哈勃的光谱仪仍然是观察环绕介质中某些原子的最好工具,以帮助揭示气态晕的秘密。

三、什么是恒星天

恒星是大质量、明亮的等离子体球。太阳是离地球最近的恒星,也是地球能量的来源。白天由于有太阳照耀,无法看到其他的恒星;只有在夜晚的时间,才能在天空中看见其他的恒星。恒星一生的大部分时间,都因为核心的核聚变而发光。核聚变所释放出的能量,从内部传输到表面,然后辐射至外太空。几乎所有比氢和氦更重的元素都是在恒星的核聚变过程中产生的。恒星天文学是研究恒星的科学。

天文学家经由观测恒星的光谱、光度和在空间中的运动,可以测量恒星的质量、年龄、金属量和许多其他的性质。恒星的总质量是决定恒星演化和最后命运的主要因素。其他特征,包括直径、自转、运动和温度,都可以在演变的历史中进行测量。描述许多恒星的温度对光度关系的图,也就是赫罗图(HR图),可以测量恒星的年龄和演化的阶段。

恒星诞生于以氢为主,并且有氦和微量其他重元素的云气坍缩。一旦核心有足够的密度,有些氢就可以经由核聚变的过程稳定的转换成氦。恒星内部多余的能量经过辐射和对流组合的携带作用传输出来;恒星内部的压力则阻止了恒星在自身重力下的崩溃。一旦在核心的氢燃料耗尽,质量不少于0.5太阳质量的恒星,将膨胀成为红巨星,在某些情况下更重的化学元素会在核心或包围着核心的几层燃烧。这样的恒星将发展进入简并状态,部分被回收进入星际空间环境的物质,将使下一代恒星诞生时正元素的比例增加。

恒星并非平均分布在星系之中,多数恒星会彼此受引力影响而形成聚星,如双星、三合星、甚至形成星团等由数万至数百万计的恒星组成的恒星集团。当两颗双星的轨道非常接近时,其引力作用或会对它们的演化产生重大的影响,例如一颗白矮星从它的伴星获得吸积盘气体成为新星。

每一颗恒星都要给它取一个独特的名字,才能够便于研究和识别。

中国在战国时代起已命名肉眼能辨别到的恒星或是以它所在星官(包括三垣以及二十八宿)命名,如天关星、北河二、心宿二等;或是根据传说命名,例如织女星(织女一)、牛郎星(河鼓二)、老人星等,构成一个不严谨的独立体系。

天文学家对宇宙中恒星的数量一直有不同的估算。最著名的一个说法是美国天文学家卡尔·萨根在他的著作《千亿的千亿》中提出的一个猜测,认为宇宙中有1000亿个星系,每个星系有1000亿个恒星。而据此天文学家又进一步推测各星系恒星数量约为1000亿的一万亿倍。美国天文学家彼得·范·多昆和天体物理学家查理·康罗伊对来自星系的光强度分析后认为大约有3X1023。

多数恒星的参数被用SI单位来表示,但是有时也会采用CGS单位(像是使用尔格/秒来表示光度)。质量、光度和半径通常都会以太阳为单位,建立在太阳的特性上:

太阳质量:公斤

太阳光度:瓦特

太阳半径:米

巨大的长度,像是巨星的半径或是联星系统的半长轴,经常会用天文单位—地球和太阳的平均距离来表示,大约是一亿五千万公里或九千三百万英里。

参考资料:镍钴分离