首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
溶剂萃取 2024-09-30 20:30:45

大连废旧金属交易市场(大连金属回收种类)

一、大连大连如何解聚回收聚酯材料

分类:生活>>家居装修

解析:

废塑料的废旧回收和再生利用

废塑料的回收:

废塑料的回收是进行再利用的基础。回收的金属交易金属难度在于废塑料数量大、分布广、市场品种多、回收体积大,种类许多废塑料与其他城市垃圾混在一起,大连大连给回收造成很大困难。废旧

目前,金属交易金属国外在废塑料回收方面已积累了不少经验,市场他们把废塑料的回收回收作为一项系统工程,***、种类企业、大连大连居民共同参与。废旧德国于1993年开始实施包装容器回收再利用,金属交易金属1997年回收再利用废塑料达到60万吨,是当年80万吨消费量的75%。目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志。日本树脂再生利用成功的秘诀就在于建立了回收循环体制。回收循环管理体制的核心就是尽量减少回收环节,各厂家在建立销售网点的同时也要考虑建立回收网点。厂家负起回收利用自家生产的产品废旧物品的责任,在回收自家生产的废旧物品时,原标准零部件及其材料性能就容易把握,可以充分有效地再生利用,能够确保再生产品的性能。同时,还可以减少热回收,减少烦琐程序和环境污染。由于产品的模块化,使再生利用部分的技术研究开发方向更加明确。

为进一步利用,回收的废塑料往往进行分离,采用的主要分离技术有密度分离、溶解分离、过滤分离、静电分离和浮游分离等,见图2.1。日本塑料处理促进协会的水浮选分离装置一次分离率就可达到99.9%以上,美国DOW化学公司也开发了类似的分离技术,以液态碳氢化合物取代水分离混合废塑料,取得了更佳的效果。美国凯洛格公司与伦塞勒综合技术学院联合开发出溶剂性分离回收技术,不需人工分拣,即可使混杂的废旧塑料得到分离。该法是将切碎的废旧塑料加入某种溶剂中,在不同温度下溶剂能有选择

地溶解不同的聚合物而将它们分离。应用的溶剂以二甲苯为最佳,操作温度也不太高。对一些新的分离技术如电磁快速加热法、反应性共混法等也有不少报道。电磁快速加热法可回收分离金属—聚合物组件,反应性共混法能实现对带涂料层废弃保险杠的回收分离。另外,国外已开发出计算机自动分选系统,实现了分选过程的连续自动化。瑞士的 Bueher公司用卤素灯为强光源照射下,经过4种过滤器的识别,由计算机可分离出PE、PP、PS、PVC和PET废塑料,生产能力为It/h。

直接使用或与其他聚合物混制成聚合物合金。这些产品可用于制造 6生塑料制品、塑料填充剂、过滤材料、阻隔材料、涂料、建筑材料和粘合剂等。这是一种简单可行的方法,实现了重复使用,可分为熔融再生和改性再生两类。

(1)熔融再生

该法是将废塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。

简单再生已被广泛采用,主要回收树脂生产厂和塑料制品厂生产过程中产生的边角废料,也可以包括那些易于清洗、挑选的一次性使用废弃品。这部分废旧料的特点是比较干净、成分比较单一,采用简单的工艺和装备即可得到性质良好的再生塑料,其性能与新料相差不多。现在塑料废弃物品约有20%采用这种回收利用方法,现阶段大多数塑料回收厂是属于这一类的。

复合再生所用的废塑料是从不同渠道收集到的,杂质较多,具有多样化、混杂性、污脏等特点。由于各种塑料的物化特性差异及不相容性,它们的混合物不适合直接加工,在再生之前必须进行不同种类的分离,因此回收再生工艺比较繁杂,国际上已采用的先进的分离设备可以系统地分选出不同的材料,但设备一次性投资较高。一般来说,复合再生塑料的性质不稳定,易变脆,故常被用来制备较低档次的产品,如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。

目前,我国大连、成都、重庆、郑州、沈阳、青岛、株洲、邯郸、保定、张家口、桂林以及北京、上海等地分别由日本、德国引进20多套(台)熔融法再生加工利用废塑料的装置,主要用于生产建材、再生塑料制品、土木材料、涂料、塑料填充剂等。

(2)改性再生

是指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。

日本宝冢市工业技术研究开发试验所发明了一种方法,可将废纸和废聚乙烯加工成合成木材,这种合成木材可以和天然木材一样加工,质地也和天然木材一样好。澳大利亚克莱顿聚合物合作研究中心研究出一种用聚乙烯薄膜边角料和废纸纤维生产建筑业用木材替代物的生产工艺,该加工过程系在一台双螺杆挤出机内进行,工艺温度低于200℃,能避免纤维的降解。用该方法生产的新闻纸/聚乙烯复合材料的外观、密度和机械性能与硬纤维板相似,可用标准工具进行切割、成型,在钉钉子时的防裂性也很好,防水性能比硬纤维板要好。西堀贞夫的“爱因木”技术以干态研磨清洗达到塑料废弃物再资源化,使用再生原料PE、PP、PVC、ABS等混合废弃木屑,生产木屑含量超过50%以上的新型木板。爱因木技术的问世引起了世界各国,特别是发达国家的关注并产生了强烈反响。

在化学添加剂方面,汽巴—嘉基公司生产出一种含抗氧剂、共稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能基本恢复到原有水平;荷兰也有人开发出一种新型化学增容剂,能将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切粉碎工艺(Solid State Shear Pulverization,S3P)进行机械加工,无需加热和熔融便可对树脂进行分子水平上的剪切,形成互容的共混物,共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠曲模量可与HDPE和LLDPE纯料相媲美。近两年出现的固相剪切挤出法、反应性共混法、多层夹心注塑技术以及反应挤塑法则使一些难以回收的废塑料的再生利用成为可能。

(3)木粉填充改性废塑料

木粉填充改性废塑料是一种全新的绿色环保塑木材料,其加工方法也是物理改性再生方法。由于近几年来国内外对该方面的研究较多,发展较快,并且已有商品化产品出现,塑木材料及其相关技术的发展已成为一种趋势

木粉与废旧塑料复合材料的开发与研究不但可以提供充分利用自然资源的机会,而且也可以减轻由于废旧塑料而引起的环境污染,因此,这种木塑复合材料是一种节约能源、保护环境的绿色环保材料。其应用范围很广,主要应用在建材、汽车工业、货物的包装运输、装饰材料及日常生活用具等方面,有广阔的发展前景。从国内外专利调研中也可看出这点。木粉作为塑料的一种有机填料,具有许多其他的无机填料所无法比拟的优良性能:来源广泛、价格低廉、密度低、绝缘性好、对加工设备磨损小。但它并没有像无机填料那样得到广泛应用,原因主要有以下两点,与基体树脂的相容性差;在熔融的热塑性塑料中分散效果差,造成流动性差和挤出成型、加工困难。

①木粉的处理:木纤维材料优选为炊木材料,如白杨木、雪松锯屑等,这种木纤维有规则的形状和纵横比,使用前需经处理干净,尽量干燥,然后加工成类似锯屑规格的木粉。各专利对木粉的规格、大小都作了相应规定:长度优选为1—10mm,厚度0.3—1.5mm,纵横比2.5—6.0,吸湿率小于12%(按重量计)。

②对塑木复合物的加工要求:复合物颗粒挤出成材时,若采用的是无通风设备的挤出工艺,颗粒应尽可能干燥,含水量应在 0.01%~5%(质量分数)之间,最好小于3.5%。有通风设备的,含水量小于8%是可以接受的。否则,挤出材料会产生裂纹或其他表面缺陷。

对复合物颗粒的截面形状作了研究,认为有规则几何形状的截面更有利,包括三角形、正方形、矩形、六边形、椭圆形、圆形等’,优选为有近似圆形或椭圆截面的规则圆柱体。

在挤出工艺中木纤维更宜沿挤出方向取向,这种定向能使相邻平行的木纤维与包覆在定向木纤维上的高分子相互交叠,从而能改善材料的物理性能。通常取向度为20%,优选30%。这种结构的材料有着充分增强的强度、拉伸模量,适宜于制作门窗。

研究了木粉与废塑料的混合比例,优选条件为塑料45%(质量分数,后同)、木粉55%,还发现从塑料40%、木纤维60%到塑料60%、木纤维40%的混合比例都可生产合用的产品。混合物组分的选定视终产品的特性、塑料和木纤维的类型而定。

③相容性的改善:由于木粉中主要成分是纤维素,纤维素中含有大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,吸湿率可达8%一12%,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小。使用适当的添加剂改性聚合物和木粉的表面,可以提高木粉与树脂之间的界面亲和能力,改性的木粉填料具有增强的性质,能够很好地传递填料与树脂之间的应力,从而达到增强复合材料强度的作用。因此,要得到性能优良、符合条件的塑木复合材料,首先要解决的问题是相容性的问题。·

相容性问题主要依靠加入各种添加剂解决。

偶联剂法:偶联剂可以提高无机填料及无机纤维与基体树脂之间的相容性,同时也可改善木粉与聚合物之间的界面状况。硅烷偶联剂和钛酸酯偶联剂是应用最广泛的两类偶联剂,实验表明,这两种偶联剂都能改善填料与树脂的相容性。

相容剂法:加入相容剂法是最简单而且很有效的方法。据报道,合适的相容剂有马来酸酐等接枝的植物纤维或马来酸酐改性的聚烯烃树脂、丙烯酸酯共聚物、乙烯丙烯酸共聚物。这些相容剂中大部分含有羟基或酐基,能够与木粉中的羟基发生酯化反应,降低木粉的极性和吸湿性,故与树脂有很好的相容性。

④添加剂的用量对复合材料性能的影响:偶联剂的用量与填料的活化效果并非成正比关系,当添加剂含量为1%时,材料的拉伸强度和拉伸模量最好,随着添加剂用量的增加,材料的性能反而下降。因此添加剂的用量不能太多,否则,既影响性能,又造成不必要的浪费。

⑤流动性能的改善:对于挤出成型加工来说,要求所加工的物料有一定的流动性。大多数情况下填充塑料都需要经过熔融、受力、变形后,经冷却定型制成各种制品,因此木粉填料的加人对熔体流变性能的影响是必须加以研究的。其中最重要的是对熔体粘度的影响。

随着木粉含量的增加,聚合物熔体粘度升高,这与木粉在基体树脂中的分散状况有关。木粉颗粒在基体中是以某种聚集状态的形式存在,呈聚集态的木粉对填充体系流动性能的影响是不利的,可加入适量的硬脂酸来降低木粉颗粒的集聚数量,改善成团现象,使其在基体树脂中充分分散。此外,木塑复合材料在熔融状态时属于假塑性流体,随着剪切速率的增加,表观粘度下降。所以为了使填充体系具有良好的加工流动性能,应当尽可能采用较高的剪切应力,以降低填充体系的剪切粘度,使之适合于挤出成型加工。

⑥加工条件的改善:挤出成型、热压成型、注射成型是加工塑木复合材料的主要成型方法。由于挤出成型加工周期短、效率高、成型工艺简单,因此挤出成型方法是一种较佳的选择方案。

单螺杆挤出机可完成物料的塑化和输送任务。由于木粉的填充使聚合物熔体粘度增大,增加了挤出难度,所以,用于木粉填充改性的单螺杆挤出机必须采用特殊设计的螺杆,螺杆应具有较强的混炼塑化能力。

由于木粉结构蓬松,不易对挤出机螺杆喂料,在挤出之前应对物料进行混炼制粒。由于木粉具有吸水性,制粒前应对木粉进行干燥处理,干燥温度为150℃左右,时间以3h为宜,如果干燥不充分,制品中会有气泡产生,致使材料的机械强度下降。加工温度的控制也十分重要,温度过高,木粉由于热作用会发生炭化现象,从而影响材料表观颜色。因此,在加工过程中应适当控制加工温度。

化学方法:

是指通过化学反应使废旧塑料转化成低分子化合物或低聚物。这些技术可用于以废旧塑料为原料生产燃料油、燃气、聚合物单体及石化、化工原料。

从技术角度来说,化学方法主要有高温裂解、催化裂解、加氢裂解、超临界流体法以及溶剂解。热裂解法生成沸点范围宽的烃类,回收利用价值低。催化裂解由于有催化剂存在,反应温度可降低几十度,产物分布相对易于控制,能得到晶位高的汽油。超临界流体法因其环保、经济、分解速度快、转化率高等特点,正成为目前的研究热点,既适用于废塑料油化,又可用于缩聚物溶剂解。溶剂解主要用于缩聚型废塑料的解聚回

收单体。

从用途来讲,化学方法因终产品的不同又可分为两种,一种是制取燃料(汽油、煤油、柴油、液化气等),另一种是制取基本化工原料、单体。

(1)制取燃料(油、气)的油化技术

国外早在20世纪70年代石袖危机时期已开始开发油化技术,

裂化,lkg废塑料产油最多可达iL。这种技术不使用搅拌装置,只适合于聚烯烃,还不能用于含卤类塑料。

APME(欧洲塑料生产者协会)认为,回收工艺要有生命力,必须能够接受组成广泛的混合塑料。目前工业界已对富含PVC(高至60%)的废塑料进行了实验室工程研究和初步的中试,但尚未对示范装置的建设提供最佳工艺条件。

日本在2000年4月对废塑料全面实施“包装容器再生法”后,为解决混杂塑料的油化问题,日本废塑料再生促进协会及废物研究财团在***的资助下,开发成功一般混合废塑料的油化技术。其工艺过程包括前处理工序、脱氯工序、热分解。为了改善油品质量,加入催化剂进行改质。

三菱重工、东芝、新日铁等日本公司均已先后进行了中试或工业化试验,可产出汽油、柴油、重油等油晶,技术已过关,但经济上尚未过关。为此,有关公司正通过改进工艺以大幅度降低成本,突出的为东北电力会同三菱重工利用超临界水进行废塑料油化试验的结果,反应时间由过去的2h大幅缩短至2min后,油品的回收率仍保持在80%以上的高水平,从而有利于成本的降低。考虑到油价的上涨将有利于提高经济效益,目前正在进行的0.5t/h的工业化试验,预计成功后将较快实用化。

(2)制取基本化学原料、单体回收的技术:

混合废塑料热分解制得液体碳氢化合物,超高温气化制得水煤气,都可用作化学原料。德国Hoechst公司、Rule公司、BASF公司、日本关西电力、三菱重工近几年均开发了利用废塑料超高温气化制合成气,然后制甲醇等化学原料的技术,并已工业化生产。

近年来废塑料单体回收技术日益受到重视,并逐渐成为主流方向,其工业应用亦在研究中。1998年5月在德国慕尼黑举行的第14届国际分析应用裂解学术会议上,出现了有关高分子废弃物再生利用发展的新趋向。从本次会议发表的论文看,对于高分子材料的“白色污染”问题,国际上在基本解决了高分子废弃物经裂解制备燃料的研究和工业化之后,已趋向将高分子废弃物通过有效的催化—裂解方法转化为高分子合成原料的新

阶段。目前研究水平已达到单体回收率聚烯烃为90%,聚丙烯酸酯为97%,氟塑料为92%,聚苯乙烯为75%,尼龙、合成橡胶为80%等。这些结果的工业应用亦在研究中,它对环境及资源利用将会产生巨大效益。

美国BattelleMemorial研究所(美国专利US5136117)已成功开发出从LDPE、HDPE、PS、PVC等混合废塑料中回收乙烯单体技术,回收率58%(质量分数),成本为3.3美分/kg,目标是两年后实现工业化。日本总代理商——三菱商社已引进该技术并商业化开发,已建成流量20L/h的连续反应装置。

溶剂解(包括水解和醇解)主要用于缩聚高分子材料的解聚回收单体,适用于单一品种并经严格预处理的废塑料。目前主要用于处理聚氨酯、热塑性聚酯和聚酰胺等极性废塑料。例如利用聚氨酯泡沫塑料水解法制聚酯和二胺,聚氨酯软、硬制品醇解法制多元醇,废旧PET解聚制粗对苯二甲酸和乙二醇等。

另外,近年来超临界流体法也越来越多地应用于解聚缩聚型高分子材料,回收其单体,效果远优于通常的溶剂解。日本T.Sako等人利用超临界流体分解回收废旧聚酯(PET)、玻璃纤维增强塑料(FRP)和聚酰胺/聚乙烯复合膜。他们采用超临界甲醇回收PET的优点是PET分解速度快,不需要催化剂,可以实现几乎100%的单体回收。他们还用亚临界水回收处理PA6/PE复合膜,使PA6水解成单体‘·己内酰胺,回收率大于70%一80%。

热能再生:

塑料燃烧可释放大量的热量,聚乙烯和聚苯乙烯的热值高达46000kJ/kg,超过燃料油平均44000kJ/kg的热值。燃烧试验表明,废塑料完全具备作为燃料的基本性质。它与煤粉、重油的燃烧对比试验详见表2.2。从表2.2中可看出,废塑料发热量与煤和石油相当,且不含硫。此外由于含灰分少,燃烧速度快。

因此,国外将废塑料用于高炉喷吹代替煤、油和焦,用于水泥回转窑代替煤烧制水泥,以及制成垃圾固形燃料(RDF)用于发电,收到了很好的效果。

(1)燃料化:垃圾固形燃料RDF

日本积极推广用废塑料制垃圾固形燃料(RDF)。RDF技术原由美国开发,日本近年来鉴于垃圾填埋场不足、焚烧炉处理含氯废塑料时造成HCI对锅炉的腐蚀和尾气产生二D8英污染环境的问题,利用废塑料发热值高的特点混配各种可燃垃圾制成发热量20933kJ/kg和粒度均匀的RDF后,既使氯得到稀释,同时亦便于贮存、运输和供其他锅炉、工业窑炉燃用代煤。垃圾固形燃料发电最早在美国应用,并已有RDF发电站37处,占垃圾发电站的21.6%。日本结合大修将一些小垃圾焚烧站改为RDF生产站,以便于集中后进行连续高效规模发电,使垃圾发电站的蒸汽参数由<30012提高到45012左右,发电效率由原来的15%提高到20%~25%。秩父小野田水泥公司已在回转窑上试烧RDF成功,不仅代替了燃煤,而且灰分也成为水泥的有用组分,效果比用于发

电更好。目前日本各水泥厂正积极推广。

(2)高炉喷吹、水泥回转窑喷吹

高炉喷吹废塑料技术是利用废塑料的高热值,将废塑料作为原料制成适宜粒度喷人高炉,来取代焦炭或煤粉的一项处理废塑料的新方法。国外高炉喷吹废塑料应用表明,废塑料的利用率达80%.排放量为焚烧量的0.1%~1.0%,仅产生较少的有害气体,处理费用较低。高炉喷吹废塑料技术为废塑料的综合利用和治理“白色污染”开辟了一条新途径,也为冶金企业节能增效提供了一种新手段。

德国的不莱梅钢铁公司于1995年首先在其2号高炉(容积2688m3)上喷吹废塑料,并建立了一套70kt/a的喷吹设备,随后克虏伯/赫施钢铁公司也建立了一套90kt/a的喷吹设备,德国其他的钢铁公司也准备采用此项技术。日本NNK公司1996年在其京滨厂1号高炉(容积4093m3)上喷吹废塑料,计划处理废塑料30kt/a,它

还打算向日本其他厂转让此项技术。日本环保界和舆论界对此寄予厚望,日钢铁联盟已将此纳入2010年节能规划,要求年喷吹100万吨以上,相当于钢铁工业能耗的2%,前途大有可为。

另外,日本水泥回转窑喷吹废塑料试验成功。德山公司水泥厂在长期燃烧废轮胎的基础上,于1996年在废塑料处理促进协会的配合下成功进行了回转窑喷吹废塑料试验。

发酵法

有资料报道,废聚乙烯可以通过氧化发酵和热解发酵两种方法转化成微生物蛋白。该法为非主流方法,目前不常用。

相关信息【收藏该信息】【打印】【关闭窗口】【向朋友推荐】

• DTY、DT等化学纤维产品含义简解. 2006-11- 10

•关于大化纤、中化纤、小化纤. 2006-11- 10

•水性丙烯酸酯—聚氨酯粘合剂项目通过专家鉴定. 2006-11- 9

• e--氨基己酸的磷酸二氢盐在异戊二烯橡胶中的作用.

二、1000字论文,关于废电池回收及处理的

电池产品对环境的危害主要是酸、碱等电解质溶液和重金属的污染。不同类型的电池污染物也不同。

一般来说,电池中的有害物质主要有Zn、Hg、CNi、Pb等重金属;铅蓄电池中的H2S04;各种碱性电池中的KOH和锂电池中的IiPP6电解液等。Hg及其化合物,特别是有机汞化物,具有极强的生物毒性、较快的生物富集速率和较长的脑器官生物半衰期。Cd易在动植物体内富集,影响动植物的生长,具有很强的毒性。Pb对人的胸、肾脏、生殖、心血管等器官和系统产生不良影响,表现为智力下降、肾损伤、不育及高血压等。Zn,Ni的毒性相对较小,但超过一定浓度范围时,会对人体产生不良影响和危害。废旧电池中的酸、碱解质溶液会影响土壤利水系的pH值,使土壤和水系酸性化或碱性化。电池电解质构成污染的主要组份是其中的可溶重金属,特别是铅蓄电池电解液中大量的硫酸铅和镍镉电池中的氢氧化镉。电池中的重金属离子在土壤或水体中溶解并被植物的根系吸收,当牲畜以植物为食料时,体内就积累了重金属。人类食人含重金属的粮食、蔬菜和肉类、水,顺着这条食物链,重金属就会在人体里富集。由于重金属离子在人体里难以排泄,最终会损害人的神经系统及肝脏功能。

废电池的回收利用研究

1废电池再生利用现状

国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。

小型二次电池目前使用较多的有镍镉、镍氢和锂离子电池,镍镉电池中的镉是环保严格控制的重金属元素之一,锂离子电池中的有机电解质,镍镉、镍氢电池中的碱和制造电池的辅助材料铜等重金属,都构成对环境的污染。小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。

民用干电池是目前使用量最大、也是最分散的电池产品,国内年消费80亿只。主要有锌锰和碱性锌锰两大系列,还有少量的锌银、锂电池等品种。锌锰电池、碱性锌锰电池、锌银电池一般都使用汞或汞的化合物作缓蚀剂,汞和汞的化合物是剧毒物质。废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。

2废旧干电池再生利用技术

a.人工分选回收利用技术

一般是将干电池分类后,进行简单的机械剖开,人工分离出锌皮、塑料盖、炭棒等,残存的Mn02、水锰石等混合物送人回砖窑煅烧,制成脱水的Mn02,此法简单易行,但占用劳动力较多,经济效益不大。

b.火法回收利用技术

一般是将干电池分类、破碎后,送入回转窑,在1100~1300摄氏度的的高温下,锌及氯化锌被氧化为氧化锌随烟气排出,用旋风除尘器回收氧化锌,残存的二氧化锰及水锰石进入残渣,再进一步回收锰等物质,此法简便易行,一般的冶炼厂勿需增加设备即可回收锌。

c.湿法回收利用技术

根据锌、二氧化锰可溶于酸的原理,将废旧干电池分类、破碎后,置于浸出槽中,加入稀硫酸(100~120g/L)进行浸出,得到硫酸锌溶液,可用电解法制得金属锌,滤渣经洗涤分离出铜帽、炭棒后,剩余物Mn02、水锰石经煅烧后制得Mn02。所用方法有焙烧一浸出法和直接浸出法。

湿法与火法相比较,具有投资少,成本低,建厂速度快,利润高、工艺灵活等优势,但不能保障有害成份完全回收。

3废电池回收利用过程中二次污染的防治

以上的三种回收方法皆简单易行,但各有不足,存在着二次污染的问题,通过大量实验测定,我们得到了防治二次污染的可行方法。

首先将废旧干电池分类,以机械进行剖开后,分离出铜帽、锌皮,可分别回收利用。剩余的炭包物质经磁选除铁后,按1:4的固液比用水浸制1小时,取上层清液进行蒸发、结晶,沉淀物的主要成份是Mn02、MnO(OH)、乙炔黑、碳棒等物质,加入回转窑炼到600摄氏度,产生的烟气经冷凝后可得凝缩液,定期清洗即可得纯汞。同时也防止汞蒸气污染环境。在煅烧的过程中,混合物中大量的乙炔黑与碳,将Mn02还原为MnO。其反应过程如下:

2Mn0 2+C--->2MnO+C0 2

把此煅烧物按固液比1:4加入浓度小于2mol/L硫酸溶液中,在温度80℃下浸制1小时,发生如下反应:

MnO+H 2 S0 4--->MnS0 4+H 2 0

得到硫酸锰盐溶液,同时,也将引人其他可溶性重金属硫酸盐。

所得的锌皮及铜等金属可直接重熔利用,氯化铵可以制肥料或提纯作为化工试剂,硫酸锰是动、植物生长的激素成份,可用于油漆油墨的吹干剂和一些有机合成反应的催化剂,此外也用于造纸、陶瓷、印染和电解锰的生产试剂。表1为锌锰干电池可回收物质的成份。

这种回收方法投资较少,采用的设备简单,易于在中小城市得以实现,从而免除了废旧电池的运输问题。

废电池回收之后的溶液,浓缩并与EDTA反应生成金属络合物,可以彻底消除二次污染。经测定,回收废电池后的溶液中所含重金属量符合国家环保标准。若要将这些金属进行分离,利用其稳定性不同可分级处理。表2为金属离子与EDTA络合稳定常数。

4废旧电池回收过程中存在的问题及建议

①电池回收后无法处置,一般都采用堆放。堆放过程中电池有可能泄漏或有毒物质扩散。

②由于电池的种类繁多,假冒产品多,也给电池回收带来了困难,有的电池是含汞电池,有的是含镉电池,有的以氯化铵为电解液,而有的则以氯化锌为电解液,因此建议生产厂家用统一的标准标识电池的种类及内含的主要成份,以便回收利用。

③加强高性能环保型电池的开发,实现普通民用电池的无汞化。

④回收处理废电池,国家应从政策上给予扶持。

三、资源污染有哪种

根据《中国环境保护21世纪议程》和《1996年中国环境状况公报》公布的数据,中国目前的环境状况主要数据如下:

1〕大气环境

*我国目前的空气污染相当于发达国家五六十年代污染最严重时的水平。大气污染以煤烟性污染为主,主要污染物为烟尘和二氧化硫,其中工业二氧化硫排放量约占70%;

*全国大城市汽车尾气污染趋势加重。氮氧化物已成为一些大城市空气中的首要污染物。广州、北京为首,其次是上海、鞍山、武汉、郑州、沈阳、兰州、大连、杭州等城市;

*全国600多个城市中,大气环境质量符合国家一级标准的城市不到1%;

*全国大、中城市的总悬浮微粒和降尘基本都超过国家规定的标准;

* 1996年我国酸雨区面积迅速扩大,已约超过国土面积40%,对我国农作物、森林等影响巨大。仅江苏、浙江等7省便因酸雨而造成农田1.5亿亩减产,年经济损失约37亿元,森林生态效益损失54亿元。酸雨频率大于90%的城市有宜宾、衡阳、长沙、赣州;酸雨频率大于80%的城市还有梧州、厦门、怀化、南昌、图门;酸雨频率大于70%的还有乐山、广州。

2〕水资源和水环境

*我国水资源紧张,人均水资源占有量仅为世界人均的1/4;

*全国300多个城市缺水,其中近百个城市严重缺水,每年因缺水而减少的产值达1200亿元;

*我国著名的5大湖鄱阳湖、洞庭湖、太湖、洪泽湖、巢湖的蓄水量都在减少,湖面缩小了1/4甚至一半;

*我国江河湖库水域普遍受到不同程度的污染,78%的城市河段不适宜作饮用水源,50%的城市地下水受到污染,工业较发达城镇附近的水域污染突出;

*我国七大水系的污染程度次序为:辽河、海河、淮河、黄河、松花江、珠江、长江、从河流的氨氮、高锰酸盐、挥发酚等主要污染参数来看,水质情况普遍不好。有些河流中铜、氰化物、汞有超标现象。城市河段悬浮物超标现象普遍,主要污染物是耗氧的有机物和氯化物等。

*主要大淡水湖泊污染程度的次序为:巢湖(西半湖〕、滇池、南四湖、太湖、洪泽湖、洞庭湖、镜泊湖、兴凯湖、博斯藤湖、松花湖、洱海。主要淡水湖泊水库磷、氮污染面广,部分湖泊和水库汞或其他重金属污染严重;

*城市中80%以上工业废水和生活污水未经处理排入水体,使流经主要城市的70%河段受到不同程度的污染。主要污染物来自化工、石化、造纸、食品、制革、纺织等企业排放的高浓度有机废水和大量未经处理的城市生活污水;

*城市生活污水排放量还在逐年递增,目前城市污水处理率仅为5%,绝大部分直接排入江河湖泊中。生活污水加上化肥和农药中氮、磷的流失,促使了我国的湖泊富营养化;

* 50%的城市饮用水源受到污染;

*地下水因过量开采,形成地面下沉和水质恶化;我国四大海域(东海、渤海、黄海和南海〕的近岸海域污染加重,无机氮、无机磷和石油类污染普遍超标。

3〕固体废弃物

*我国废弃物排放量大,工业废渣和城市垃圾大都堆积在城市的郊区和河流荒滩上,已成为严重的污染源,由于综合利用和处置率低,累计堆存量达65亿吨,占地5万余公顷;

*随着中国化学工业的发展,有毒有害废弃物也有所增长。有毒有害固体废弃物都未经过严格的无害化和科学的安全处置,成为中国亟待解决并具有严重潜在性危害的环境问题;

*城市生活垃圾无害化处理率仅为1.2%,全国有2/3的城市陷于垃圾围城。露天简单堆放的垃圾不仅影响城市景观,同时污染了大气、水和土壤,成为城市发展中棘手的环境问题之一;

*全国有1/4城市垃圾粪便不能日产日清。

4〕环境噪声

*我国噪声污染较严重,2/3的城市人口暴露在较高的噪声环境中;

*区域环境噪声达标率不到50%;

* 90%的城市道路交通噪声超过了国家规定的70分贝,全国每年因道路交通噪声污染导致的经济损失约合人民币216亿元;

*社会生活噪声呈明显上升趋势。

5〕乡镇工业污染排放惊人

*我国乡镇企业污染物排放量已占全国污染排放总量30%,局部地区占50%以上;

*全国已有2/3的河流和1千多万公顷土地受乡镇企业污染;

*小造纸、小印染、小电镀、小化工、农药、小制革、小酿酒、小化肥、食品等使农林地区的水受到严重污染;

*小冶炼,如土炼硫、土炼砷、汞等导致周围区域植被死光,成为生态死区;

*小土焦、小水泥、石棉等行业造成大气污染。

6〕土地资源

*我国人均耕地面积为0.085公顷,是世界人均的1/5;

*全国耕地面积以每年平均30万公顷左右的速度递减,主要原因是基本建设占用耕地上升;

*我国耕地土壤质量呈下降趋势。全国耕地有机质含量平均已降到1%,明显低于欧美国家2.5%-4%的水平。东北黑土地带土壤有机质含量由刚开垦时的8%-10%已降为目前的1%-5%;

*盐碱化、沙化、水土流失在继续吞噬大量耕地。目前全国受盐碱化威胁的耕地约有1亿亩,受沙漠化威胁的农田近6千万亩;

*全国约有1/3的耕地受到水土流失的危害,每年流失的土壤约50亿吨,相当于在全国的耕地上刮去1cm厚地表土,所流失的养分相当于全国一年生产的化肥氮磷钾含量。水土流失的主要原因很大部分是由于不合理耕作和植被破坏造成的;

*我国遭受工业“三废”污染的农田达1亿多亩。被重金属镉污染的耕地有20余万亩,涉及11个省25个地区。被汞污染的耕地有48万亩,涉及15个省21个地区;

*大量使用农药使土壤有毒物质含量加大,同时也杀死了大量害虫天敌和有益动物;

*由于农用薄膜的大量使用,用后不加回收,废膜已成为我国新的土壤污染物。

7〕草原资源

*我国草地面积占国土面积的40%,然而,由于风蚀沙化、植被破坏、超载放牧、不合理开垦以及草原工作的低投入、轻管理等,致使草原严重退化。草原退化面积达9千多万公顷,占可利用草场面积的1/3以上,平均产草量下降了30%-50%。中国百亩草地产肉量只25.5公斤,产奶26•8公斤,毛3公斤,仅为相同气候带下美国的1/27,新西兰的1/82;

*预计到2000年,草原牧草产量可能比目前下降30%。

8〕森林资源

*我国森林覆盖率约为13%,居世界第121位;

*我国人均森林面积约0.11公顷,相当于世界人均森林面积的1/9;

*海南岛的热带雨林在过去四十年中由1300多万亩减至367万亩,森林覆盖率也由26%降至7.2%。由于大量垦荒,种植橡胶等,热带雨林被砍伐面积达500多万亩,其中利用292亩,200万亩被沦为不毛之地;

*我国宝贵的原始森林长期受到乱砍滥伐、毁林开荒、森林火灾与病虫害的破坏,原始林每年减少5千平方公里;

*占国土面积50%的西部干旱、半干旱地区森林覆盖率不足1%,许多地区无林可言;

*酸雨带来的酸沉降正在导致大片森林衰退消失,森林受害面积128.1万公顷,年木材损失6亿元,森林生态效益损失约54亿元。

9〕近海环境

*我国的近岸海域已受到不同程度的污染和生态破坏,特别是与大中城市毗连的海域、海湾、入海河口处的污染与生态破坏已经比较严重,入海污染物中来自陆上的占80%以上;

*渤海、黄海、东海和南海四海区中,近岸海域石油类污染普遍严重,并存在不同程度的有机物污染和富营养化,部分近岸海域水质和底质的重金属污染也比较严重。1990年,在中国沿岸海域从南到北相继发生赤潮34起,为1961-1980年平均值的30倍;

*海洋环境污染和生态破坏导致了沿岸、近海渔业资源衰退,生物种类减少,水产品质量下降,养殖滩涂大片荒废,海水养殖污染损害事故不断发生,造成经济损失几亿元;

*近岸海域以有机物污染和石油类污染为主要类型的污染有加重趋势,沿海乡镇企业的进一步发展,将加速海洋环境污染由沿海城市毗连海域向沿海农村近岸海域扩散;

*中国近海长期过度捕捞渔业资源致使一些传统经济鱼类种群生态衰退,如不采取有力措施加以保护和休养生息,中国近海渔业资源将难以恢复其再生增殖能力;

*南海的珊瑚礁和红树林近年来被开采砍伐,不仅破坏了这些宝贵的资源,而且使红树林和珊瑚礁鱼类失去生存环境和营养供应地,种群也在消退;

*若对江豚、海豹、海龟及玳瑁等珍稀动物不采取有效的保护措施,它们有在中国近海逐渐消退的危险。

10〕生物多样性与物种保护

*中国是世界上动植物种类最多的国家之一,生物多样性居全球第八位,北半球第一位;

*中国有高等植物32800种,占世界总种数的12%,仅次于马来西亚和巴西,居世界第三位。其中,被子植物24500多种,裸子植物236种,苔藓植物约2000种,蕨类植物2600余种,植物药材4773种,淀粉原料植物300种,纤维原料植物500种,油脂植物800种,香料植物350种,已开发利用的真菌800种。我国特有的植物约有200个属(万余种〕。银杉、水杉、水松、金钱松、台湾松、银杏、珙桐、水青树、钟萼木、香果树等都是中国特有的珍贵树种;

*中国是世界三大栽培植物起源中心之一,水稻、大豆、谷子、黄麻等20余种作物起源于中国。中国拥有大量栽培植物的野生亲缘种,如野核桃、野板栗、野荔枝、野龙眼、野杨梅、野生稻、野生大麦、野生大豆、野生茶叶、野苹果等,是珍贵的野生植物资源。中国常见的栽培作物有50多种,果树品种万余个;

*中国动物种类约10.45万,占世界总数的10%。脊椎动物4400多种,占世界总种数的10%以上,其中两栖类210种,爬行类320种、鸟类1186种、兽类500种、鱼类2200余种。分别占世界总数的10%、13%、5%、7%、10%。昆虫约10万种;

*中国有鹤类9种、雁鸭类46种、食肉类54种、雉类276种、灵长类190种;

*由于人口的急剧增长,不合理的资源开发活动,以及环境污染和自然生态破坏,中国的生物多样性损失严重,动植物种类中已有总物种数的15%-20%受到威胁,高于世界10%-15%的水平。在《濒危野生动植物种国际贸易公约》所列640个种中,中国就占156个种;

*近50年来,中国约有200种植物已经灭绝,高等植物中濒危和受威胁的高达4000-5000种,约占总种数的15%-20%。许多重要药材如野人参、野天麻等濒临灭绝。《中国珍稀濒危保护植物名录》确定珍稀濒危植物354种,其中,一级8种,二级143种,三级203种;

中国近百年来,约有10余种动物绝迹,如高鼻羚羊、麋鹿、野马、犀牛、新疆虎等。目前,有大熊猫、金丝猴、东北虎、雪豹、白暨豚等20余种珍稀动物又面临绝灭的危险。《国家重点保护野生动物名录》确定国家重点保护动物275种,其中一级96种,二级161种。丹顶鹤、台湾猴、扭角羚、白唇鹿、华南虎、褐马鸡、黑颈鹤、绿尾红雉、扬子鳄、中华鲟等属于我国100多种珍稀动物之列;

*全国自然保护区763多处,珍稀濒危动物人工繁殖场106个,珍稀植物引种栽培场73个。自然保护区面积达6618.4万ha,占国土面积的6.8%。

11〕气候变暖与自然灾害

*近40年来中国的气候存在着变暖的总趋势,80年代的年均气温值比前30年的平均气温值高0.21摄氏度;

*气温增高可增大地表水的蒸发量,从而加重中国华北和西北的干旱、土地沙化、碱化以及草原退化的危害;

*中国东南沿海地区由于受高温季风气候的影响,可能导致台风侵袭沿海的频率和强度增加,从而加重沿海地区的风灾和暴风洪涝灾害;

*气候变暖可能对中国西北、华北、东北、西南、华中的夏季气候造成影响,使农业病虫害频繁产生;

*气候变暖将会造成海平面上升,这对三角洲地带和平原沿岸危害最大,而这些地区都是中国经济密集、比较发达的地区,海平面上升,必将对中国的社会、经济发展产生巨大影响。

参考资料:矿用过滤机