首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
磨矿专家系统 2024-09-30 20:12:57

旧金属回收价格查询(老宁金属回收)

一、旧金面对重金属污染环境问题有何改善建议

围绕重金属污染防治,属回收价属回收近年来,格查政府部门、询老科研院所、宁金产业界齐上阵,旧金在政策标准、属回收价属回收技术支撑、格查监测体系等领域全面开展研究与实践。询老近日,宁金来自云南、旧金广西等14个重金属污染防治重点省(区)的属回收价属回收环保厅及其业务支撑单位代表,水专项、格查环保公益性行业科研专项项目相关负责人、询老有关科研单位以及环保企业代表齐聚湖南省株洲市,宁金总结近年来工作进展,交流科研成果,为重金属污染防治工作的全面深入支招。

工业行业重金属污染有救吗?

以节能减排为核心,以污染预防为重点,以提升科技水平为切入点,一定能找到突破口

“重金属污染主要是工业行业造成的。”中国工程院院士、环境保护部清洁生产中心主任段宁说,我国工业行业重金属污染具备排量大、浓度高,空间集中、行业集中,设备老化,技术落后等特点。行业单位产品的重金属排放强度是全国平均值的近7倍;其中有色金属矿(含伴生矿)采选业、有色金属冶炼业、含铅蓄电池业、皮革及其制品业、化学原料及化学制品制造业这五大重金属污染重点防控行业的重金属排量占总排放量的95%以上;我国相当一部分工业行业投产年代已久,设备老化严重;企业规模小、技术落后情形在涉重行业普遍存在。

工业行业重金属污染如何防治?段宁结合电解锰行业的实际案例,提出了一套清洁生产全过程控制思路,即以节能减排为核心,以污染预防为重点,以提升科技水平为切入点,以工艺清洁化、设备密封化、运行自动化、计量精准化为突破口。他提供的实际案例中包括了减量技术案例、替代技术案例和回用技术案例。

在减量技术案例中,他介绍了湖南金旭冶化有限责任公司采用的电解锰行业废水全过程控制技术。这家公司废水排放量大,氨氮排放量曾居全国前列;重金属(铬、镉、铅)产生点位多;电解液、钝化液、金属粉尘直接洒落。公司采用电解锰行业废水全过程控制技术,设计和实现了3次减量、两次循环的大型设备(与5000吨电解锰生产线配套),实现了水污染物的近零排放;开发了连续出槽、入槽工艺,实现省电8%以上,提高产能20%以上;将激光定位、机械手、自动控制等高新技术引入了电解锰行业。

据段宁介绍,在回用技术方面,目前企业广泛采用的是“还原-中和沉淀法”,这种方法极易造成铬的二次污染。而贵州太丰锰业有限公司(两万吨/年)采用了电解锰含铬废水资源化技术,这项技术已在松桃太丰电解锰厂建立示范工程。通过工程实施,太丰电解锰厂年回收废水中铬资源46吨,经济效益达92万元,年节省铬渣处置费用48万元。

与会代表表示,重污染行业遵循清洁生产全过程控制思路,特别是工艺清洁化、设备密封化、运行自动化、计量精准化“四化”要求,对重金属污染防治很有启发。

能实时监测污染吗?

我国重金属污染监测需求特殊,急需运用成套技术装备和性能先进的仪器,全面覆盖“三相五毒四手段”

当前,我国重金属污染监测技术装备面临诸多问题:在线监测技术装备门类不齐,实时连续感知手段缺少;现场快速检测技术装备落后,应急工作被动;技术装备未实现产业化或产业化程度低,规模效应小;进口设备价格昂贵、服务缺少、普及困难等。

同时,在实际工作中,重金属污染监测还有特殊困境:技术手段单一,应用成套化程度低,不符合综合防治需求;现场工况恶劣复杂,进口传感器适应性差,不满足应用需求;幅员辽阔,污染严重,需要搭建世界上最庞大的环境监测网。

针对这种状况,中国环境监测总站研究员杨凯在交流会上作了题为《“十二五”重金属污染监测需求与技术现状》的报告。杨凯认为,“十二五”时期重金属污染监测最急需的是成套的技术装备和性能先进的仪器。

技术装备成套方面,他向与会代表介绍了“三相五毒四手段”。“四手段”即环境预警、环境监督、微调工艺;环境执法、污染调查、环境教育;例行监测、学术研究、环保仲裁;立体监测、同步监测、事故跟踪。

杨凯强调说,在新形势下,只有推广有机整合应用“四手段”监测成套化技术装备,才能遏制汞、镉、铅、铬、砷环境“五毒”的排放与迁移转化,全面保护气、水、固体环境“三相”,切实保障民生,促进社会和谐。

杨凯在报告中还介绍了“十二五”重金属污染监测的特殊需求。一是“装备成套”:监测技术全面覆盖“三相五毒四手段”,为环境三相重金属污染防治提供科学、完备的技术装备体系。二是“应用成套”:系列装备要满足重金属监察执法、监测及污染预警应急等“应用成套”需求,为环保部门立体监管提供利器。三是要求研制应用的重金属监测技术装备指标达到先进水平,逐步满足成套监测技术设备性能先进的需求。

科技支撑能跟上吗?

下一步将完善政策标准体系,注重科学性、系统性、实用性,加强技术示范与评估

针对重金属污染防治工作,环境保护部已经在科研、标准、技术支撑上做出全面安排。科技标准司副司长刘志全介绍说,目前,重金属污染已被列入水专项、环保公益型项目的重点支持方向。环境保护部积极组织与重金属污染防治相关的项目,并加强了对历年相关项目的管理。其中水专项在“十一五”期间开展了湘江重点污染源削减关键技术研究与示范,取得了阶段性成果,近期将进行验收。

从2007年开始,国家环保公益型项目先后安排了超过1亿元的资金,涉及重金属污染防治方面有近30个项目,包括长株潭重金属矿区污染控制和生态修复技术研究、有色金属冶炼重点行业重金属污染控制和管理支撑技术研究等,其中一批研究成果已得到应用。

刘志全表示,环境保护部科技标准司注重技术引导,特别是制定了与重金属污染治理相关的一些技术政策、最佳可行技术指南、工程技术规范,涵盖铅锌冶炼、钢铁行业、电解锰等行业。

在标准方面,环境保护部已经陆续发布了钢铁、电解锰、炼选矿、陶瓷、有色金属工业排放标准及清洁生产标准,标准力度越来越大,指标越来越严格。刘志全表示,下一步,将继续健全政策体系,完善标准。在标准方面,注重科学性、系统性和实用性,特别是补充重金属污染对人体健康影响的判定,包括环境质量标准中重金属的指标和限值。

刘志全说,今后要加大技术示范和推广力度,加强技术政策的引导。积极开发和推广安全高效、能耗物耗低、环保达标、资源综合利用好的先进工艺技术和装备。包括建立清洁生产和污染全过程控制的技术体系,加强重金属污染治理修复技术的开发和应用。“要推广一批经济适用的技术,特别是一些已经成功应用的技术和项目,加大向全国辐射推广的力度。”

治理技术瓶颈怎样突破?

在重金属废气治理、污染土壤修复、含重金属废物综合利用等方面,都缺乏经济适用的技术;建议建设示范项目进行技术集成与创新

作为此次会议的“东道主”,湖南省环保厅常务副厅长王会龙在会上指出:“重金属污染治理有资金、技术上的困难,但最大的瓶颈在于技术。”

他说,目前,重金属污染治理技术总体来讲是需求量大与供应不足的矛盾。“科技成果、技术成果供应不足,还跟不上防治的步法。比如在重金属废气的治理上,在重金属污染土壤的修复方面,在含重金属废物的综合利用方面等,都缺乏经济适用的技术。在协同减排方面的技术也非常缺乏。”

王会龙说,重金属污染,污染因子很多,治理其中一、二种在技术上可行,协同减排、综合解决问题就比较困难。“重金属污染防治迫切需要科技支撑,尤其是经济适用技术的技术突破。”

对此,北京矿冶研究总院环境工程研究所副所长杨晓松表示,重金属污染治理必须坚持“源头削减―过程控制―末端治理”的综合防治技术路线,同时要实现环境治理区域化、社会化。“要从企业封闭、孤立的‘三废’治理模式,转变为污染典型区域(矿区或大型联合企业)环境综合整治和社会统筹安排的治理模式。”

他同时指出,目前,我国缺乏重金属污染防治技术管理嵌入环境管理和形成常态化管理的机制;相关技术评估体系建设滞后,缺少量化的技术评估检测平台;缺少“产生―加工―应用―回收”全过程的重金属污染综合防治技术管理体系等。

杨晓松在会上建议,要严格执行相关的法律法规、产业政策和行业准入条件,淘汰落后产能。在污染防治工作中,注重全过程控制和必要的末端处理,实现“工艺、环保一体化”。在相关技术研发方面,他建议应由注重单项处理技术向有价金属回收技术和技术的集成和协同方向转变。

针对重金属污染治理过程中的技术瓶颈,湖南博世科华艺环境工程有限公司副总经理成一知的建议是:建设示范项目,进行技术集成与创新。

具体来说,就是根据园区土壤/废渣及水体底泥的重金属污染特征,综合考虑污染物种类、形态、规划用地性质、治理目标及治理成本等因素,开展化学稳定固化技术、植物修复及微生物修复等生态治理技术有机结合的重金属污染土壤/场地治理技术集成与创新性研究和工程示范,实现重金属污染治理技术的本土化、系列化、区域化应用。

二、黑色金属矿产

1)铁

铁矿资源是钢铁工业的粮食和发展钢铁工业的物质基础。世界铁矿石资源极为丰富,据美国地质调查局1999年统计,1998年铁矿石储量为1400×108t,储量基础3000×108t,现有储量足以保证全球整个21世纪铁矿石的生产,若按年产铁矿石10×108t计,世界铁矿石储量足够开采到2140年。

铁矿资源分布广泛,但地理分布却很不平衡。原苏联、澳大利亚、巴西、加拿大、美国、印度和南非等国共占有铁金属储量的84%,而其中的74%集中在前三个国家。铁矿工业类型多,当前勘查和开采的铁矿主要类型有:

(1)前寒武纪含铁石英岩型铁矿床(受变质沉积铁矿床)及风化壳型铁矿床。这类铁矿床(包括与其有关的风化淋滤型富铁矿床)在世界铁矿石储量和产量中均占有特别重要的地位,常构成储量多达几十至几百亿吨的巨大铁矿区。如俄罗斯的库尔斯克磁异常区,乌克兰的克里沃罗格铁矿盆地,澳大利亚的哈默斯利铁矿区和中国的鞍山铁矿等。在国外主要是贫铁矿经风化淋滤而成的优质富铁矿,而在中国则以条带状硅质贫铁矿为主,少量为热液型磁铁矿富矿。

含铁石英岩型矿床一般具有储量巨大、产地集中、矿石成分简单、易采易选等特点,早已成为现代铁矿工业的主要开采对象。随着该类型贫矿石利用水平的不断提高和澳大利亚、巴西、印度等国及西非地区这种类型铁矿区的深入勘查和开发,加之世界铁矿总资源的90%来自含铁石英岩,其风化淋滤后,形成的富铁矿石占世界富铁矿石总量的70%,因此从长远来看,这种矿床类型地位的重要性必然是有增无减。

(2)火山岩型铁矿床(包括火山沉积型矿床和产于火山岩体内外接触带的热液充填交代矿床)。火山成因铁矿床是指成矿物质全部或部分来源于火山作用的矿床,包括火山岩浆喷发、溢流、侵入及与其有关的火山期后气液活动过程中所形成的铁矿床。这类矿床在国外分布比较广,其中比较重要的有:原苏联土尔盖地区晚古生代磁铁矿矿床、阿尔泰-萨彦地区早古生代磁铁矿和赤铁矿矿床(这两个矿床的成因有争议,许多学者认为属夕卡岩型)、安加拉-伊利姆地区产在爆发角砾岩筒中的磁铁矿矿床、哈萨克斯坦阿塔苏地区泥盆纪的火山-沉积铁矿床和铁锰矿床,伊朗中部巴夫格区的元古宙磁铁矿矿床,智利晚新生代安第斯构造活化区的拉科磁铁矿矿床和德国西部泥盆纪兰-狄尔型赤铁矿矿床。在中国这类铁矿分布不普遍但不少为大型富铁矿,如海南石碌、云南大红山和宁芜地区一些与闪长玢岩有关的铁矿床等等。火山成因铁矿具有产地比较集中,单个矿床规模有时较大,矿石品位较高等特点,是比较重要的铁矿类型。

(3)岩浆型铁矿床。主要有3类:①钒钛磁铁矿矿床。这类矿床在西方又以瑞典南部的典型矿区命名,称为塔贝格型矿床。世界著名的钒钛磁铁矿矿床(区)有:原苏联中乌拉尔的卡奇卡纳尔-古谢沃戈尔矿区、南乌拉尔西坡的库萨矿床组、南非的布什维尔德矿床、加拿大的马格皮耶矿床、中国四川攀枝花和红格铁矿等。这类铁矿在国外探明储量中占的比重不到10%,是钒和钛的重要来源,因而在某些国家和地区具有比较重要的经济价值。②地台碱性岩建造中的磷灰石-磁铁矿矿床。这类矿床与褶皱带发育早期基性岩浆派生的碱性岩有关,属晚期岩浆矿床。在瑞典北部和中部、挪威、芬兰、原苏联等国家已知有这类矿床。其开采量约占世界开采量的5%,主要来自瑞典和原苏联。③超基性-碱性岩-碳酸岩建造中的磷灰石-磁铁矿矿床。这种矿床通常产在中心型超基性-碱性岩浆杂岩体的碳酸岩岩体中。在波罗的地盾、非洲地台及加拿大和巴西等国均有分布。这类矿床矿石易选,可综合利用磷灰石。

(4)接触交代-热液型(广义的夕卡岩型)铁矿床。这类矿床可细分为:①接触交代型铁矿床又称夕卡岩型铁矿床,大部属富铁矿和②热液型磁铁矿、赤铁矿和菱铁矿矿床与接触交代矿床相伴产出,由于矿石品位较高,矿石易选,这类矿床一直是比较重要的开采对象。

(5)沉积型铁矿床。这类矿床主要包括古生代到新生代形成的鲕状铁矿床,按形成环境分为浅海相和陆相两大类:①浅海相沉积矿床的矿体多呈层状,含矿层位比较稳定,规模也较大。国外这类矿床主要分布在欧洲及其邻区,矿石含铁量一般小于40%,个别可达50%,磷含量一般较高,不易分选。②陆相沉积铁矿广泛分布于中新生代河湖相沉积中,一般规模不大,品位也较低。在俄罗斯和哈萨克斯坦有此类典型矿床。目前,在阿拉伯国家、纽芬兰、英国、法国、德国、乌克兰和哈萨克斯坦等国和地区仍在开采这类矿石。

此外,还有一些矿床,如我国白云鄂博矿床,归属问题一直有争议,还有待进一步研究。

赵一鸣(1994)认为我国铁矿地质工作应采取以下对策:①受变质沉积铁矿床应作为最主要的找矿对象,因为这类铁矿无论在国外或国内均是最重要的铁矿类型;②接触交代-热液型铁矿床是我国富铁矿的主要来源,应进一步注意寻找;③要加强我国西部等边远地区铁矿资源的勘查工作;④加强对铁矿伴生元素的综合评价和综合利用研究。

2)锰

据美国地质调查局统计1998年世界陆地锰储量和储量基础分别为68000×104t和500000×104t,按近期产量计算,世界现有锰储量可保证开采80年以上。但我国钢铁工业的不断发展,锰资源尚不能满足需要,找富锰矿和优质锰矿已成为我国地质找矿工作的重要任务之一。锰是地壳上最丰富的元素之一,在各种地质作用中均可发生富集,因而在陆地上和洋底均分布有大量锰矿资源。

(1)产于陆地的锰矿。世界陆地锰矿床按成因可划分为沉积型、火山-沉积型、沉积-变质型、热液型和风化壳型五大类,其中热液型锰矿无多大工业价值,主要为海相沉积(含火山-沉积)型,而沉积变质型和风化壳型(硫化矿床氧化带锰帽除外)实质上是原生海相沉积或火山-沉积型锰矿床经区域变质或风化作用改造的产物。美国地质调查局D.H.德扬等人在1984年调查了世界已知29个具有重要经济价值锰矿床(包括了我国瓦房子、遵义、乐平和湘潭四个矿床),统计得出了世界95%以上已探明的可采储量是来自海相化学沉积型矿床的结论。该结论也适用于中国,这类矿床合计占总数的90%以上。因此在解决我国锰矿问题时,首先必须分析研究世界和我国海相沉积锰矿床形成和分布的主要特点。在世界范围内大陆上的锰矿床虽可出现在各个地质时期,但主要集中在元古宙和老第三纪。而且集中分布于南非和原苏联,占世界已查明资源量的80%以上。锰储量最多的国家有南非、乌克兰、加蓬、澳大利亚、巴西、格鲁吉亚、中国和印度等。如南非的锰储量的95%集中在卡拉哈里矿区和原苏联的尼科波尔和大托克马克等大型和超大型矿床中。国外锰矿石富矿的比率较大,除原苏联以贫矿为主外,一般矿石的含锰量均在30%以上,最富者可达48.5%。我国锰矿赋存的时代不一,主要集中在泥盆纪(占总储量的34.5%)、震旦纪(25.5%)、二叠纪(13.8%)、三叠纪(10.7%)和元古宙(9.9%)。我国有五大类含锰建造,以硅质岩建造和黑色碳质页岩建造的含矿性最好,大型锰矿床多与这两类建造有关。

(2)现代海底锰矿。世界海底的锰资源比陆地上要多几倍。按海底锰质沉积的特点可分为铁锰(多金属)结核和富钴铁锰结壳。结核一般分布在碳酸盐补偿深度以下的海盆中,并含有铜、镍、锌、钴等有用组分。结壳则生长在最低含氧层以下,碳酸盐补偿深度以上的海山区上,其基底一般为玄武岩。有关海洋结核和结壳资源量的报道很多,数值差异很大。据Archer在1976年的估计有结核资源750×108t(锰192×108t)。由于海底结核和结壳除含铁、锰之外,还含钴、镍、铜、铂等多种有用组分,因此从60年代末开始,许多国家陆续加入了海洋资源调查的行列。已查明深海海底资源丰富,具有商业开发的潜力。但即使在开采和加工技术允许的前提下,尚有许多因素(政治的、社会的、经济的)制约着有关的开采活动,商业开采的时间到2010年尚不可能实施。

70年代以来,锰矿床成因研究工作蓬勃开展,其中有代表性的是:①美国地质调查所Mosier和Page根据海洋环境中913个火山成因锰矿床的统计资料,从板块构造观点出发,于1988年提出了“海洋环境中火山成因锰矿床的描述性模式和品位-吨位模式”。该模式主要适合于太平洋沿岸带中—新生代的火山成因锰矿床。②美国地质调查局Force和Cannos从一些巨大锰矿床属浅海沉积这一事实出发,以锰和铁的海洋地球化学性质为理论依据,在1988年提出“黑色页岩盆地周围浅海锰矿床沉积模式”,又称“分层盆地边缘锰矿床沉积模式”。③原苏联学者姆斯季斯拉夫斯基提出的原生锰矿床主要产在地裂作用形成的陆缘海或洋壳扩张产生的裂谷区内,主要是海相火山-沉积型和热液-沉积型矿床。他把地史时期所有海相锰矿床的形成均纳入其所划分的各相对应的造海时期。还把传统上作为稳定地台边缘沉积型锰矿床典型代表的尼科波尔、恰图拉矿床、格鲁特岛锰矿床和我国的瓦房子锰矿床,均列为热液-沉积型矿床。由以上实例可见,从不同的成因观点或成矿模式出发,就需要在锰矿找矿工作的布置上采用与之相应的普查预测准则和方法。

1994年刘曼华对我国锰矿找矿突破的可能途径和对策提出了如下建议:①有计划、有步骤地加强对我国已知含锰层位的详细研究,如我国成锰高峰期(早震旦世,晚泥盆世,晚二叠世和中三叠世)的几个含锰层位以及元古宙含锰地层的研究;②风化型锰矿床应作为寻找富锰矿床的主攻对象;③热液改造型锰矿床在找富锰矿中需给予应有的重视;④以区域成矿预测研究为先导,以有利成矿区带为重点开展找矿工作;⑤应重视海底资源的调查和勘探工作。

3)铬

世界铬铁矿资源极为丰富,储量巨大。据美国地质调查局统计,1998年世界铬铁矿储量和储量基础各为37×108t和76×108t。现有储量几乎可供世界整个21世纪的生产,储量基础可供全球几百年的生产和需求。由于资源高度集中在南非、哈萨克斯坦、津巴布韦、芬兰、印度和巴西等国,美国早已把其列为战略物资,许多没有铬铁矿或铬铁矿储量很少的国家主要依靠进口,很难保证得到长期稳定的供应,同时也促使一些国家勘查和研究低品位铬铁矿的利用问题。

世界所有具有工业价值的铬铁矿矿床都产于基性-超基性岩及其派生的岩石中,其地理分布比较局限。原生铬铁矿矿床从成因上看属岩浆分凝矿床。按矿床的几何形态及含矿岩石的岩性特征和构造环境,通常可分为两类:①层状铬铁矿矿床。这类矿床主要分布于南非、津巴布韦、芬兰和美国等地,尽管层状侵入体中铬铁岩的垂直分布和岩石组合彼此相似,但不同地区的层状铬铁矿矿床仍有明显差异。②豆荚状(透镜状)铬铁矿矿床。这类矿床广泛分布于褶皱区中(乌拉尔、地中海带和太平洋带)或古老地台和地盾上(巴西地盾、波罗的地盾和印度地台)。大型矿床主要发育于原苏联、士耳其、印度和巴西等国。原苏联肯皮尔赛和中国西藏罗布萨铬铁矿矿床均属此类矿床。某些重要矿床兼有两类矿床的特点。层状铬铁矿矿床占世界铬铁矿储量的98%以上,但从目前产量来看,豆荚状铬铁矿矿床约占世界铬铁矿产量的55%以上。③残积-坡积铬铁矿砂矿。属次要类型,在世界铬铁矿储量和开采量中不起重要作用。

4)钒

世界钒储量充足,美国地质调查局1998年统计探明储量1000×104t和储量基础2700×104t,能满足世界长期(约135年)的需要。钒主要分布在俄罗斯、中国、南非和美国。

目前对钒矿床的分类尚无统一的认识。可供开发利用的钒资源一般产于钒钛磁铁矿矿床、磷块岩矿床、含铀砂岩和粉砂岩型矿床中,通常作为副产品大量存在于铝土矿和含钽物质(如原油、煤、油页岩和沥青砂)中,其中岩浆型钒钛磁铁矿是世界钒的最主要来源。

(1)岩浆型钒矿床。属于这一类型的主要是岩浆熔离和贯入成因的钒钛磁铁矿矿床,这类矿床规模巨大,是最主要的钒矿床类型,约占全球钒资源的67%。如南非德兰士瓦布什维尔德杂岩体上带的钒钛磁铁矿矿床、原苏联乌拉尔山东坡的卡奇卡纳尔和古谢诺戈尔钒钛磁铁矿矿床以及中国攀枝花钒钛磁铁矿矿床拥有巨大的钒资源,瑞典、印度和澳大利亚等国也有这一类型的矿床。

(2)同生沉积钒矿床。这类矿床可分为两个亚类:①富碳质同生沉积物容矿的钒矿床是钒的第二个重要来源。如委内瑞拉在原油中,美国在黑色页岩中提取钒。中国南方震旦系、寒武系、志留系中的石煤含有大量潜在钒资源,有些地方的石煤已被开采提取钒,但大部分因品位太低而难以回收。②非碳质同生沉积物容矿的钒矿床。这类矿床主要包括产于某些沉积铁矿和钛磁铁矿滨海砂矿中的钒矿床,如原苏联和新西兰均有此类矿床。

此外,还有后生(受变质)钒矿床和表生钒矿床,这两类矿床目前意义不大,是潜在的钒资源。

三、重金属污染物在土壤中的传播特征是什么

重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。

随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万 t、Cu为340万 t、Pb为500万 t、Mn为1500万 t、Ni为100万 t[1]。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。

南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。

本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。

1土壤中重金属污染物来源与分布

土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。

1.1大气中重金属沉降

大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染[3],它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂[4]铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。俄罗斯的一个硫酸生产厂[5]也是由工厂烟囱排放造成S、V、As的污染。

公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁—杭公路南京段[6]两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁—连一级公路淮阴段[7]两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高。在法国索洛涅地区A71号高速公路[8]沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值2~8倍,而公路旁重金属浓度比沉降粒子中高7~26倍。在斯洛文尼亚[9]从居波加到扎各瑞波公路两侧,铅除了分布在公路两侧以外,还受阶地地貌和盛行风的影响,高铅出现在低地,公路顺风一侧铅含量较高。

经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市—郊区—农区,随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。

此外,大气汞的干湿沉降[10~12]也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。

1.2农药、化肥和塑料薄膜使用

施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重[13]。经过对上海地区菜园土地、粮棉地的研究[14],施肥后,Cd的含量从0.134 mg/kg升到0.316 mg/kg,Hg的含量从0.22 mg/kg升到0.39 mg/kg,Cu、Zn增长2/3。通过新西兰[15]50 a前和现今同一地点58个土样分析,自施用磷肥后,镉从0.39 mg/kg升至0.85 mg/kg。在阿根廷[16]由于传统无机磷肥的施入,进而导致土壤重金属Cd、Cr、Cu、Zn、Ni、Pb的污染。

农用塑料薄膜生产应用的热稳定剂中含有Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。

1.3污水灌溉

污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不污染[17]。近年来污水灌溉已成为农业灌溉用水的重要组成部分,中国自60年代至今,污灌面积迅速扩大,以北方旱作地区污灌最为普遍,约占全国污灌面积的90%以上。南方地区的污灌面积仅占6%,其余在西北和青藏[18]。污灌导致土壤重金属Hg、Cd、Cr、As、Cu、Zn、Pb等含量的增加。淮阳污灌区自污灌以来,金属Hg、Cd、Cr、Pb、As等就逐渐增高,1995~1997年已超过警戒级[19]。太原污灌区的重金属Pb、Cd、Cr含量远远超过其当地背景值,且积累量逐年增高[20]。

1.4污泥施肥

污泥中含有大量的有机质和氮、磷、钾等营养元素,但同时污泥中也含有大量的重金属,随着大量的市政污泥进入农田,使农田中的重金属的含量在不断增高。污泥施肥可导致土壤中Cd、Hg、Cr、Cu、Zn、Ni、Pb含量的增加,且污泥施用越多,污染就越严重,Cd、、Cu、Zn引起水稻、蔬菜的污染;Cd、Hg可引起小麦、玉米的污染;污泥增加,青菜中的Cd、Cu、Zn、Ni、Pb也增加[21]。Anthony[22]研究表明,用城市污水、污泥改良土壤,重金属Hg、Cd、Pb等的含量也明显增加。

1.5含重金属废弃物堆积

含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散。通过对武汉市垃圾堆放场[23]、杭州某铬渣堆存区[24]、城市生活垃圾场[25]及车辆废弃场[26]附近土壤中的重金属污染的研究,这些区域的重金属Cd、Hg、Cr、Cu、Zn、Ni、Pb、As、Sb、V、Co、Mn的含量高于当地土壤背景值,重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的Cd、Hg、Pb为重度污染,Zn为中度污染,Cr、Cu为轻度污染。

1.6金属矿山酸性废水污染

金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。1989年我国有色冶金工业向环境中排放重金属Hg为56 t,Cd为88 t,As为173 t,Pb为226 t[27]。矿山酸性废水重金属污染的范围一般在矿山的周围或河流的下游,在河流中不同河段的重金属污染往往受污染源(矿山)控制,河流同一污染源的下段自上游到下游,由于金属元素迁移能力减弱和水体自净化能力的适度恢复,金属化学污染强度逐渐降低。江西乐安江沽口—中洲[28]由于遭受德兴铜矿的污染,水体及土壤中的重金属Cu、Pb、Zn、Cr含量增高,至鄱阳湖段重金属含量逐渐降低。美国科罗拉多州罗拉多流域[29]受采矿的影响,重金属元素Cd、Zn、Pb、As的浓度,以污染源为最高,之后随着与污染源距离延长而逐渐降低。莱安河[30]重金属污染,来自一个大型铜矿,导致重金属浓度远远超过当地背景值。流域重金属污染随季节变化而异,枯水期重金属的含量明显高于丰水期[31]。河流流速减缓可以导致该流段重金属含量增加[32]。

同一区域土壤中重金属污染物的来源途径可以是单一的,也可以是多途径的。胡永定[33]通过研究徐州荆马河区域土壤重金属污染的成因中指出:Cr、Cu、Zn、Pb是由垃圾施用引起的,As是由农灌引起的,Cd是由农灌和垃圾施用引起的,Hg是各种途径都具备。王文祥[34]通过对山东省耕地重金属元素污染状况的研究说明,工业快速发展地区铅高于农业环境,铅与距公路远近有关。乡镇企业技术、设备落后,原材料利用率低,造成其周边土壤重金属污染相当严重。据贵州1986年的统计,全省乡镇排放汞14.7万kg,土壤中有的地方达56.64 mg/kg,超过未污染土壤的84.5倍。要引起高度重视。

总的来说:工业化程度越高的地区污染越严重,市区高于远郊和农村,地表高于地下,污染区污染时间越长重金属积累就越多,以大气传播媒介土壤重金属污染土壤的具有很强的叠加性,熟化程度越高重金属含量越高。

2土壤中重金属污染物现行治理方法

关于土壤重金属污染物的研究,国外始于20世纪60~70年代,如澳大利亚、美国、德国等国家对土壤重金属较深入,尤其澳大利亚。我国在1983年对主要类型的土壤环境容量作过初步研究,如提出研究土壤重金属的生态效应、临界含量地带性分异规律和分区等。

当前,世界各国很重视对重金属污染治理方法研究,并开展广泛的研究工作[35~39]。总的来说,目前大致有以下四种治理措施:

2.1工程治理方法

工程治理是指用物理或物理化学的原理来治理土壤重金属污染。主要有:客土是在污染的土壤上加入未污染的新土;换土是将以污染的土壤移去,换上未污染的新土;翻土是将污染的表土翻至下层;去表土是将污染的表土移去等。如日本富士县神通川流域的痛痛病发源地,就是由于长期食用含镉的稻米而引发的,他们通过研究,去表土15 cm,并压实心土,在连续淹水的条件下,稻米中镉的含量小于0.4 mg/kg;去表土后再客土20 cm,间歇灌溉稻米中镉的含量也不超标,客土超过30 cm,其效果更佳。此外淋洗法是用淋洗液来淋洗污染的土壤;热处理法是将污染土壤加热,使土壤中的挥发性污染物(Hg)挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。

以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。

2.2生物治理方法

生物治理是指利用生物的某些习性来适应、抑制和改良重金属污染。主要有:动物治理是利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的重金属;微生物治理是利用土壤中的某些微生物等对重金属具有吸收、沉淀、氧化和还原等作用,降低土壤中重金属的毒性如Citrobacter sp产生的酶能使U、Pb、Cd形成难溶磷酸盐;原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感,格兰氏阳性菌可吸收Cd、Cu、Ni、Pb等[44]。植物治理是利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的重金属;重金属的植物吸收、淋溶和无效态数量将只依赖于它们的有效态的多少,重金属溶液浓度和它们的土壤的有效态之间关系遵循Freundlich吸附方程[41];超积累植物可吸收积累大量的重金属,目前已发现400多种,超积累植物积累Cr、Co、Ni、Cu、Pb的含量一般在0.1%以上,积累Mn、Zn含量一般在1%以上[40];印度芥菜(Brassica juncea)可吸收Zn、Cd、Cu、Pb等,在Cu为250 mg/kg,Pb为500 mg/kg、Zn为500 mg/kg条件下能生长,在Cd为200 mg/kg出现黄化现象[42];印度芥菜(Brassica juncea)可对Cr6+、Cd、Ni、Zn、Cu富集分别为58,52,31,17和7倍[45];高杆牧草(Agropyron elongatum)能吸收Cu等[43];英国的高山莹属类等,可吸收高浓度的Cu、Co、Mn、Pb、Se、Cd、Zn等。

生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。

2.3化学治理方法

化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、Eh和电导等理化性质,使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。其中沉淀法是指土壤溶液中金属阳离子在介质发生改变(pH值、OH-、SO42-等)时,形成金属沉淀物而降低土壤重金属的污染;如向土壤中投放钢渣,它在土壤中易被氧化成铁的氧化物,对Cd、Ni、Zn的离子有吸附和共沉淀作用,从而使金属固定。在沈阳张士污灌区进行的大面积石灰改良实验表明,每公顷施石灰1500~1875 kg籽实含镉量下降50%[18]。有机质法是指有机质中的腐殖酸能络合重金属离子生成难溶的络合物,而减轻土壤重金属的污染;吸附法是指重金属离子能被膨润土、沸石、粘土矿物等吸附固定,从而降低土壤重金属的污染。

化学治理措施优点是治理效果和费用都适中,缺点是容易再度活化。

2.4农业治理方法

农业治理是因地制宜的改变一些耕作管理制度来减轻重金属的危害,在污染土壤上种植不进入食物链的植物。主要有:控制土壤水分是指通过控制土壤水分来调节其氧化还原电位(Eh),达到降低重金属污染的目的;选择化肥是指在不影响土壤供肥的情况下,选择最能降低土壤重金属污染的化肥;增施有机肥是指有机肥能够固定土壤中多种重金属以降低土壤重金属污染的措施;选择农作物品种是指选择抗污染的植物和不要在重金属污染的土壤上种植进入食物链的植物;如在含镉100 mg/kg的土壤上改种苎麻,五年后,土壤镉含镉平均降低27.6%[46];因地制宜地种植玉米、水稻、大豆、小麦等,水稻根系吸收重金属的含量占整个作物吸收量的[35]58%~99%,玉米茎叶吸收重金属的含量占整个作物吸收量的20%~40%,玉米籽实吸收量最少,重金属在作物体内分配规律是根>茎叶>籽实[47]。土壤重金属污染也是导致生态系统破坏的重要因素。合理的利用农业生态系统工程措施,也可以保持土壤的肥力,改良和防治土壤重金属污染,提高土壤质量,并能与自然生态循环和系统协调运作。如可以在污染区公路两侧尽可能种树、种花、种草或经济作物(如蓖麻),种植草皮或观赏树木,移栽繁殖,不但可以美化环境,还可以净化土壤;蓖麻可用作肥皂的原料。也可以进行农业改良,即在污染区繁育种子(水稻、玉米),之后在非污染区种植;或种植非食用作物(高梁、玉米),收获后从秸秆提取酒精,残渣压制纤维板,并提取糠醛,或将残渣制作沼气作能源。

农业治理措施的优点是易操作、费用较低,缺点是周期长、效果不显著。

3土壤中天然矿物治理重金属污染物新方法

土壤的主要矿物组成除粘土矿物外,还存在大量的天然铁锰铝氧化物及氢氧化物、硅氧化物、碳酸盐、有机质硫化物等天然矿物。在国内外关于土壤重金属污染物防治途径研究中,人们一直强调土壤自身的净化能力,但土壤自净化能力离不开土壤中矿物种对重金属的吸附与解吸作用、固定与释放作用,土壤中具体矿物的净化能力才真正体现土壤自身的净化能力和容纳能力。土壤中有毒有害元素含量的高低,并不是直接判定土壤环境质量优劣乃至土壤生态效应的唯一标志,关键问题是要揭示这些重金属在土壤中与各种无机物之间具有怎样的环境平衡关系。在国内外为寻求地下水和土壤有机污染的修复方法而直接对土壤中多种粘土矿物进行改性研究,即利用有机表面活性剂去置换天然粘土矿物中存在着的大量可交换的无机阳离子,以形成有机粘土矿物,可有效截住或固定有机污染物,阻止地下水的进一步污染,限制有机污染物在土壤环境中迁移扩散。但特别需要指出的是,在粘土矿物改性过程中,其中的固定态重金属也一并被置换出来,导致土壤系统中业已建立环境平衡被打破,使得土壤环境中解吸释放态重金属污染物总量大大增加。至此,土壤中重金属污染物既来源于土壤中活动态的重金属,又来源于改性粘土矿物时被置换释放出来的重金属。以本实验室正在开展研究的环境矿物材料[48]—天然铁锰铝氧化物及氢氧化物为例[49, 50],其中磁铁矿、赤铁矿、针铁矿、软锰矿、硬锰矿与铝土矿等也正在成为国际上关于天然矿物净化污染方法研究方面的重点对象之一[51]。我们认为天然铁锰铝氧化物及氢氧化物的表面具有明显的化学吸附性特征,锰氧化物与氢氧化物还具有较完善的孔道特征,尤其是Fe、Mn为自然界中少数的但属于常见的变价元素,其氧化物和氢氧化物化合物往往可表现出一定的氧化还原作用。所以说天然铁锰铝氧化物及氢氧化物具有潜在的净化重金属污染物的功能,能成为土壤环境中吸附固定态重金属污染物的有效物质。

综上所述,国内外对土壤重金属污染现状与治理,取得了一定的成绩,也存在一些理论上和技术上的问题,如土壤中重金属与土壤中矿物之间的吸附与解吸、固定与释放的平衡关系的研究,土壤中重金属形态特征、转化与迁移规律的系统研究,土壤中二次污染物的及时处理等。

土壤重金属污染首先应从源头抓起,控制污染源,土壤重金属的污染已经达到相当严重的程度,要充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点。土壤质量问题是经济可持续发展和社会全面进步的战略问题,它直接影响土壤质别、水质状况、作物生长、农业产量、农产品品质等,并通过食物链对人体健康造成危害。对工业生产中排放的污染物尚未得到较彻底控制,尤其在农业生产中大量而盲目使用化学肥料和农药的今天,江河湖海、地下水及陆地中无机和有机污染物积累总量与日俱增,使土地环境质量变得极其脆弱。一旦土壤对这些污染物尤其是重金属的消纳容量达到饱和,这些污染物对耕地生产能力的潜在毁灭性破坏便有可能一触即发,有人已形象地称之为农业生产中的“定时炸弹”。从这个意义上来讲,土地管理与保护工作不仅是对耕地总量的监管,还应该加强对耕地质量的保护与改善。对土壤质量的保护便是对耕地生产能力的保护,更是提高土地利用效率的强有力措施之一。对于我国这样一个人口众多的农业大国,开展国土质量调查评价,对土壤重金属污染物进行试验研究,开发耕地污染的治理方法和技术,显得更为必要和迫切。

参考资料:智能化选矿