首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
磨矿专家系统 2024-09-30 18:25:15

钴的萃取方法(镍钴锰萃取分离原理)

一、镍钴重金属废水怎么处理

目前,锰萃重金属废水处理的取分方法大致可以分为三大类:(1)化学法;(2)物理处理法;(3)生物处理法。

化学法

化学法主要包括化学沉淀法和电解法,离原理主要适用于含较高浓度重金属离子废水的镍钴处理,化学法是锰萃目前国内外处理含重金属废水的主要方法。

2.1.1化学沉淀法

化学沉淀法的取分原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,离原理包括中和沉淀法、镍钴硫化物沉淀法、锰萃铁氧体共沉淀法。取分由于受沉淀剂和环境条件的离原理影响,沉淀法往往出水浓度达不到要求,镍钴需作进一步处理,锰萃产生的取分沉淀物必须很好地处理与处置,否则会造成二次污染。

2.1.2电解法

电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水。

物理处理法

物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。

2.2.1溶剂萃取分离

溶剂萃取法是分离和净化物质常用的方法。由于液液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。

2.2.2离子交换法

离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧化失效,再生频繁,操作费用高。

2.2.3膜分离技术

膜分离技术是利用一种特殊的半透膜,在外界压力的作用下,不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法,包括电渗析和隔膜电解。电渗析是在直流电场作用下,利用阴阳离子交换膜对溶液阴阳离子选择透过性使水溶液中重金属离子与水分离的一种物理化学过程。隔膜电解是以膜隔开电解装置的阳极和阴极而进行电解的方法,实际上是把电渗析与电解组合起来的一种方法。上述方法在运行中都遇到了电极极化、结垢和腐蚀等问题。

2.2.4吸附法

吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。活性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前景。

生物处理法

生物处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、植物修复等方法。

2.3.1生物吸附

生物吸附法是指生物体借助化学作用吸附金属离子的方法。藻类和微生物菌体对重金属有很好的吸附作用,并且具有成本低、选择性好、吸附量大、浓度适用范围广等优点,是一种比较经济的吸附剂。用生物吸附法从废水中去除重金属的研究,美国等国家已初见成效。有研究者预处理假单胞菌的菌胶团后,将其固定在细粒磁铁矿上来吸附工业废水中Cu,发现当浓度高至100 mg/L时,除去率可达96%,用酸解吸,可以回收95%铜,预处理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受环境因素的影响,微生物对重金属的吸附具有选择性,而重金属废水常含有多种有害重金属,影响微生物的作用,应用上受限制等,所以还需再进行进一步研究。

2.3.2生物絮凝

生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。生物絮凝法的开发虽然不到20年,却已经发现有17种以上的微生物具有较好的絮凝功能,如霉菌、细菌、放线菌和酵母菌等,并且大多数微生物可以用来处理重金属。生物絮凝法具有安全无毒、絮凝效率高、絮凝物易于分离等优点,具有广阔的发展前景。

2.3.3植物修复法

植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:

(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属:(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:(3)利用金属积累植物或超积累植物将土

壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类植物、草本植物、木本植物等。

藻类净化重金属废水的能力主要表现在对重金属具有很强的吸附力。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%~90%。浩云涛等分离筛选获得了一株高重金属抗性的椭圆小球藻(Chlorella ellipsoidea),并研究了不同浓度的重金属铜、锌、镍、镉对该藻生长的影响及其对重金属离子的吸收富集作用。结果显示,该藻Zn和Cd具有很高的耐受性。对四种重金属的耐受能力依次为锌>镉>镍>铜。该藻对重金属具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+浓度72h处理,去除率分别达到40.93%、98.33%、97.62%、86.88%。由此可见,此藻类可应用于含重金属废水的处理。

草本植物净化重金属废水的应用已有很多报道。风眼莲(Eichhoria crassipes Somis)是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。张志杰等的研究结果表明,干重lkg的风眼莲在7~l0d可吸收铅3.797g、镉3.225g。周风帆等的研究发现风眼莲对钴和锌的吸收率分别高达97%和80%。香蒲(Typhao rientaliS Pres1)也是一种净化重金属的优良草本植物,它具有特殊的结构与功能,如叶片成肉质、栅栏组织发达等。香蒲植物长期生长在高浓度重金属废水中形成特殊结构以抵抗恶劣环境并能自我调节某些生理活动,以适应污染毒害。招文锐等研究了宽叶香蒲人工湿地系统处理广东韶关凡口铅锌矿选矿废水的稳定性。历时10年的监测结果表明,该系统能有效地净化铅锌矿废水。未处理的废水含有高浓度的有害金属铅、锌、镉经人工湿地后,出水口水质明显改善,其中铅、锌、镉的净化率分别达99.0%,97.%和94.9%,且都在国家工业污水的排放标准之下。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。

采用木本植物来处理污染水体,具有净化效果好,处理量大,受气候影响小,不易造成二次污染等优点,越来越受到人们的重视。胡焕斌等试验结果表明,芦苇和池杉两种植物对重金属铅和镉都有较强富集能力,而木本植物池杉比草本植物芦苇具有更好的净化效果。周青等研究了5种常绿树木对镉污染胁迫的反应,实验结果表明,在高浓度镉胁迫下,5种树木叶片的叶绿素含量、细胞质膜透性、过氧化氢酶活性及镉富集量等生理生化特性均产生明显变化,其中,黄杨、海桐,杉木抗镉污染能力优于香樟和冬青。以木本植物为主体的重金属废水处理技术,能切断有毒有害物质进入人体和家畜的食物链,避免了二次污染,可以定向栽培,在治污的同时,还可以美化环境,获得一定的经济效益,是一种理想的环境修复方法。

二、分析化学的发展

古代人认识的元素,非金属元素有碳和硫,金属元素中有铜、银、金、铁、铅、锡和汞。

分析化学这一名称虽创自R.玻意耳,但其实践应与化学工艺同样古老。不能想象古代冶炼、酿造等工艺的高度发展,没有简单的鉴定、分析、制作过程的控制等手段。随后在东、西方兴起的炼丹术、炼金术可视为分析化学的前驱。

公元前3000年,埃及人已知称量的技术。最早出现的分析用仪器当推等臂天平,它记载在《莎草纸卷》(公元前1300)上。巴比伦的祭司所保管的石制标准砝码(约公元前2600)尚存于世。不过等臂天平用于分析,当在中世纪用于烤钵试金法(火试金法之一)中。

公元前4世纪,已知使用试金石以鉴定金的成色。

公元前3世纪,阿基米德在解决叙拉古王喜朗二世的金冕的纯度问题时,即利用了金和银密度之差,这是无伤损分析之先驱。

公元60年左右,老普林尼将五倍子浸液涂在莎草纸上,用以检出硫酸铜的掺杂物铁(Ⅲ),这是最早使用的有机试剂,也是最早的试纸。

1751年,J.T.埃勒尔·冯·布罗克豪森用同一方法检出血渣(经灰化)中的含铁量。 1663年,玻意耳报道了用植物色素作酸碱指示剂。但真正的容量分析应归功于法国J.-L.盖-吕萨克。

1824年,他发表漂白粉中有效氯的测定,用磺化靛青作指示剂。随后他用硫酸滴定草木灰,又用氯化钠滴定硝酸银。这三项工作分别代表氧化还原滴定法、酸碱滴定法和沉淀滴定法。络合滴定法创自J.von李比希,他用银(Ⅰ)滴定氰离子。另一位对容量分析作出卓越贡献的是德国K.F.莫尔,他设计的可盛强碱溶液的滴定管至今仍在沿用。他推荐草酸作碱量法的基准物质,硫酸亚铁铵(也称莫尔盐)作氧化还原滴定法的基准物质。最早的微量分析是化学显微术,即在显微镜下观察样品或反应物的晶态、光学性质、颗粒尺寸和圆球直径等。

17世纪中叶,R.胡克从事显微镜术的研究,并于1665年出版《显微图谱》。法国药剂师F.A.H.德卡罗齐耶在1784年用显微镜以氯铂酸盐形式区别钾、钠。

1747年,德意志化学家A.S.马格拉夫用显微镜证实蔗糖和甜菜糖实为同一物质;

1756年,用显微镜检验铂族金属。

1865年,A.黑尔维希著《毒物学中之显微镜》。

1877年,S.A.博里基著《以化学/显微镜法作矿物与岩石分析》,并使用气体试剂(如氟化氢、氯)、氟硅酸和硫化铵与矿物及其切片作用。T.H.贝仑斯不仅从事无机物的晶体检验,还扩充到有机晶体。

1891年,O.莱尔曼提出热显微术,即在显微镜下观察晶体遇热时的变化。L.科夫勒及其夫人设计了两种显微镜加热台,便于研究药物及有机化合物的鉴定。热显微术只需一粒晶体。后来又发展到电子显微镜,分辨率可达1埃。

不用显微镜的最早的微量分析者应推德国J.W.德贝赖纳。他从事湿法微量分析,还有吹管法和火焰反应,并发表了《微量化学实验技术》一书。公认的近代微量分析奠基人是F.埃米希。他设计和改进微量化学天平,使其灵敏度达到微量化学分析的要求,改进和提出新的操作方法,实现毫克级无机样品的测定,并证实纳克级样品测定的精确度不亚于毫克级测定。有机微量定量分析奠基人是F.普雷格尔,他曾从胆汁中离析一降解产物,其量尚不足作一次常量碳氢分析,在听了埃米希于1909年所作的有关微量定量分析的讲演并参观其实验室后,他决意将常量燃烧法改为微量法(样品数毫克),并获得成功;1917年出版《有机微量定量分析》一书,并在1923年获诺贝尔化学奖。

常量操作如不适用于微量分析则需改进。例如,常量过滤是将沉淀定量移入滤纸锥中或过滤坩埚中。若用此法于微量沉淀过滤,则在原进行沉淀的烧杯壁所粘附的物质就不能再忽略不计了,所以必须改变办法。微量过滤采用滤棒吸出母液,而留全部沉淀于容器中。容器可用25毫升瓷坩埚,它兼用作称量器皿;还可在其内洗涤沉淀,然后再用滤棒吸出洗液。这样既可避免沉淀损失,又可简化操作手续。

无机化合物在滤纸上的行为在19世纪中已引起注意。德意志化学家F.F.龙格在1850年将染料混合液滴在吸墨纸上使之分离。更早些时候他用染有淀粉和碘化钾溶液的滤纸或花布块作漂白液的点滴试验。他又用浸过硫酸铁(Ⅲ)和铜(Ⅱ)溶液的纸,在其中部滴加黄血盐,等每滴吸入后再加第二滴,因此获得自行产生的美丽图案。1861年出现C.F.舍恩拜因的毛细管分析,他将滤纸条浸入含数种无机盐的水中,水携带“盐类”沿纸条上升,以水升得最高,其他离子依其“迁移率”而分离成为连接的带。这与“纸层析”极为相近。他的学生研究于“滤纸上分离有机化合物”获得成功,能明显而完全分离“有机染料”。

用滤纸或瓷板进行无机、有机物的检出是普雷格尔的贡献。方法简单而易行,选择性和灵敏度均高,点滴试验属微量分析范围。所著《点滴试验》和《专一、选择和灵敏反应的化学》两书,为从事分析者所必读。1921年后奥地利F.法伊格尔系统地发展了点滴试验法。

20世纪60年代,H.魏斯提出环炉技术。仅用微克量样品置滤纸中心,继用溶剂淋洗,而在滤纸外沿加热以蒸发溶剂,遂分离为若干同心环。如离子无色可喷以灵敏的显色剂或荧光剂。既能检出,又能得半定量结果。色谱法也称层析法,基本上是分离方法。

1906年,俄国М.С.茨维特将绿叶提取汁加在碳酸钙沉淀柱顶部,继用纯溶剂淋洗,从而分离了叶绿素。此项研究发表在德国《植物学》杂志上,故未能引起人们注意。

1931年,德国R.库恩和E.莱德尔再次发现本法并显示其效能,人们才从文献中追溯到茨维特的研究和更早的有关研究,如1850年J.T.韦曾利用土壤柱进行分离;1893年L.里德用高岭土柱分离无机盐和有机盐。四年后D.T.戴用漂白土分离石油。

气体吸附层析始于20世纪30年代的P.舒夫坦和A.尤肯。40年代,德国Y.黑塞利用气体吸附以分离挥发性有机酸。英国E.格卢考夫也用同一原理在1946年分离空气中的氦和氖,并在1951年制成气相色谱仪(见气相色谱法)。第一台现代气相色谱仪研制成功应归功于E.克里默。

气体分配层析法根据液液分配原理,由英国A.J.P.马丁和R.L.M.辛格于1941年提出。由于此工作之重要,他们获得1952年诺贝尔化学奖。M.J.E.戈莱提出用长毛细管柱,是另一创新。

色谱-质谱联用法中将色谱法所得之淋出流体移入质谱仪,可使复杂的有机混合物在数小时内得到分离和鉴定,是最有效的分析方法之一。

液相色谱法包括液-液和液-固色谱,后两个名称之第一物态代表流动相,第二物态代表固定相。在大气压力下,液相色谱流速太低,因此须增加压强。这方面的先驱工作是P.B.哈密顿在1960年用高压液相色谱分离氨基酸。

1963年,J.C.吉丁斯指出,液相色谱法的柱效要赶上气相色谱法,则前者填充物颗粒应小于后者颗粒甚多,因此需要大压强,所用的泵应无脉冲。

1966年,R.詹特福特和T.H.高制成这种无脉冲泵。

1969年,J.J.柯克兰改进填充物,使之具有规定的表面孔度,再将固定相(如正十六烷基)键合在载体上,使之能抗热和抗溶剂分解。载体可用二氧化硅,键合通过Si-O-C或Si-C键。薄层层析采用薄层硅胶等代替滤纸进行层析。由于硅胶颗粒均匀而细微,分离的速度和程度一般优于纸层析,分离无机物和有机物时与纸层析一样有效。

荷兰生物学家M.W.拜尔因克在1889年滴一滴盐酸和硫酸的混合液于动物胶薄层中部,盐酸扩散远些,在硫酸环之外另成一环,相继用硝酸银和氯化钡显示这两个环的存在。

9年后H.P.维伊斯曼用同样方法证明麦芽的淀粉酶中实含两种酶。

直至1956年联邦德国E.施塔尔改善涂布方法和操作,采用细颗粒(0.5~5微米)硅胶等措施,才使该法得到广泛使用。定量薄层层析始于J.G.基施纳等(1954)。他们最先测定橙柑属及其加工品中的联苯(见薄层层析)。希腊哲学家泰奥弗拉斯图斯曾记录各种岩石矿物及其他物质遇热所发生的影响。法国H.-L.勒夏忒列和英国W.C.罗伯茨-奥斯汀同称为差热分析的鼻祖。

20世纪60年代,出现精细的差热分析仪和M.J.奥尼尔提出的差示扫描量热法,它能测定化合物的纯度及其他参数,如熔点和玻璃化、聚合、热降解、氧化等温度(见热分析)。

20世纪初,提出的热重量法是研究物质,如钢铁、沉淀等遇热时重量之变化。本多光太郎创制第一架热天平,它最初只用于解决冶金方面的问题。将它用于分析方面的当推 C.杜瓦尔。他曾研究过 1000多种沉淀的热行为。例如草酸钙用高温可灼烧为氧化钙,也可在约550°C灼烧为碳酸钙。二者作为称量形式,则以后者为佳,因灼烧时既省能量,换算因子值较大(因此误差较小),又免氧化钙在称量时吸潮。

电解时,铜(Ⅱ)在阴极还原而以单质(零价)析出,再进行称量,应归入重量法。此时可认为电子是沉淀剂。还有铅(Ⅱ)在阳极氧化,以二氧化铅形式附于阳极。前法在19世纪60年代分别由德意志C.卢科和美国J.W.吉布斯独立提出。 19世纪初,用于无机重量分析的有机试剂只有草酸及其铵盐和琥珀酸铵两种。前者用于钙、镁分离和钙的测定。后者用于沉淀三价铁使它与二价金属离子分离。

1885年,M.A.伊林斯基和G.von克诺雷提出1-亚硝基-2-萘酚作为镍存在时钴的沉淀剂,同时也是第一个螯合剂。至于阴离子测定,在20世纪初,W.米勒提出4,4-联苯胺作为硫酸根的沉淀剂。

1950年,中国梁树权等将有机试剂用于重量分析,测定钨酸根。

1950年,M.布希引入4,5-二氢-1,4-二苯基-3,5-苯亚氨基-1,2,4-三氮杂茂(简称硝酸根试剂)作为硝酸根沉淀剂。1975年后,它又成为高铼酸根的良好沉淀剂。

1950年,Л.A.楚加耶夫合成了丁二肟,并观察到它与镍(Ⅱ)形成红色沉淀。两年后,联邦德国O.E.布龙克把丁二肟试剂应用于钢中镍的测定。嗣后灵敏的和选择性高的新有机试剂不断出现。中国曾云鹗等合成3-(2-胂酸基苯偶氮)-6-(2,6-二溴-4-氯苯偶氮)-4,5-二羟基-2,7-萘二磺酸,用此试剂时,稀土元素的摩尔吸光系数可以高达0.98~1.2×10升/(摩·厘米)。它是基于被测物质的分子对光具有选择性吸收的特性而建立起来的分析方法。包括比色分析法和紫外、可见分光光度法。测量某溶液对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到吸收光谱。根据各种物质所有的特殊吸收光谱,可进行定性分析和定量分析。

比色法以日光为光源,靠目视比较颜色深浅。最早的记录是1838年W.A.兰帕迪乌斯在玻璃量筒中测定钴矿中的铁和镍,用标准参比溶液与试样溶液相比较。

1846年,A.雅克兰提出根据铜氨溶液的蓝色测定铜。随后有T.J.赫罗帕思的硫氰酸根法测定铁(1852);奈斯勒法测定氨;苯酚二磺酸法测定硝酸根(1864);过氧化氢法测定钛(1870);亚甲基蓝法测定硫化氢(1883);磷硅酸法测定二氧化硅(1898)。分光光度计使用单色光和光电倍增管,波长范围为 220~1000纳米,比目视范围(400~700纳米)更宽。

用光照射悬浮液,从顶部观察,当视线与光线成直角时,称为比雾法;如果视线与光线在一条直线上时,称为比浊法。

18世纪50年代,G.J.马尔德在原子量测定中,利用了目测上层液体中氯化银悬浮液的亮度。随后,J.-S.斯塔改用一标准悬浮液作参比。

1894年,美国T.W.理查兹设计出第一台比雾计。比雾法最初用于观测原子量测定中母液中的氯(或溴)离子和银离子浓度是否达到当量。随后此法用于定量测定,其灵敏度很高,可测定一升水所含的3微克磷,或一升水所含的10微克丙酮。红外光谱是有机化学家鉴别未知化合物的有力手段。红外光谱在20年代开始应用于汽油爆震研究,继用于鉴定天然和合成橡胶以及其他有机化合物中的未知物和杂质。70年代,在电子计算机蓬勃发展的基础上,傅立叶变换红外光谱(FTIR)实验技术进入现代化学家的实验室,成为结构分析的重要工具。远红外光谱(200~10厘米)和微波谱(10~0.1厘米)是研究分子旋转的光谱法。

拉曼光谱(见拉曼光谱学是研究分子振动的另一种方法。早期拉曼光谱的信号太弱,使用困难,直至用激光作为单色光源后,才促进其在分析化学中的应用。拉曼光谱发展到现今已有采用傅立叶变换技术的FT-Raman光谱分析技术,共聚焦显微拉曼光谱分析技术,表面增强拉曼效应分析技术等,在生物医学分析、文物分析、宝石鉴定、矿物分析等领域有重要的作用。 1672年,I.牛顿在暗室中用棱镜分日光为七色,这就是原子发射光谱法的始祖。

1800年,F.W.赫歇耳发现红外线。次年J.W.里特用氯化银还原现象发现紫外区。又次年W.H.渥拉斯顿观察到日光光谱的暗线。

1815年, J.von夫琅和费经过研究,命名暗线为夫琅和费线。文献中称钠线为D线,也是夫琅和费规定的。R.W.本生发明了名为本生灯的煤气灯,灯的火焰近于透明而不发光,便于光谱研究。

1859年,本生和他的同事物理学家G.R.基尔霍夫研究各元素在火焰中呈示的特征发射和吸收光谱,并指出日光光谱中的夫琅和费线是原子吸收线,因为太阳的大气中存在各种元素。他们用的仪器已具备现代分光镜的要素。他们可称为发射光谱法的创始人。化学分析包括滴定分析和称量分析,它是根据物质的化学性质来测定物质的组成及相对含量。

光谱学

质谱学

分光度和比色法

层析和电泳法

结晶学

显微术

电化学分析

古典分析

虽说当代分析方法绝大部分为仪器分析,但有些仪器最初的设计目的,是为了简化古典方法的不便,基本原理仍来自於古典分析。另外,样品配置等前置处理,仍需要藉由古典分析手法的协助。以下举一些古典分析方法:

滴定法

重量分析

无机定性分析分析仪器:当代分析化学著重仪器分析,常用的分析仪器有几大类,包括原子与分子光谱仪,电化学分析仪器,核磁共振,X光,以及质谱仪。仪器分析之外的分析化学方法,统称为古典分析化学。

分析化学是化学的一个重要分支,它主要研究物质中有哪些元素或基团(定性分析);每种成分的数量或物质纯度如何(定量分析);原子如何联结成分子,以及在空间如何排列等等。

仪器分析的方法:它是根据物质的物理性质或物质的物理化学性质来测定物质的组成及相对含量。仪器分析根据测定的方法原理不同,可分为电化学分析、光学分析、色谱分析、其他分析法等4大类。如右图。

主要分析仪器:

原子吸收光谱法(Atomic absorption spectroscopy, AAS)

原子荧光光谱法(Atomic fluorescence spectroscopy, AFS)

α质子-X射线光谱仪(Alpha particle X-ray spectrometer, APXS)

毛细管电泳分析仪(Capillary electrophoresis, CE)

色谱法(Chromatography)

比色法(Colorimetry)

循环伏安法(Cyclic Voltammetry, CV)

差示扫描量热法(Differential scanning calorimetry, DSC)

电子顺旋共振仪(Electron paramagnetic resonance, EPR)

电子自旋共振(Electron spin resonance, ESR)

椭圆偏振技术(Ellipsometry)

场流分离法(Field flow fractionation, FFF)

传式转换红外线光谱术(Fourier Transform Infrared Spectroscopy, FTIR)

气相色谱法(Gas chromatography, GC)

气相色谱-质谱法(Gas chromatography-mass spectrometry, GC-MS)

高效液相色谱法(High Performance Liquid Chromatography, HPLC)

离子微探针(Ion Microprobe, IM)

感应耦合电浆(Inductively coupled plasma, ICP)

Instrumental mass fractionation(IMF)

选择性电极(Ion selective electrode, ISE)

激光诱导击穿光谱仪(Laser Induced Breakdown Spectroscopy, LIBS)

质谱仪(Mass spectrometry, MS)

穆斯堡尔光谱仪系统(Mossbauer spectroscopy)

核磁共振(Nuclear magnetic resonance, NMR)

粒子诱发X-射线产生(Particle induced X-ray emission spectroscopy,PIXE)

热裂解-气相色谱-质谱仪(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)

拉曼光谱(Raman spectroscopy)

折射率

共振增强多光子电离谱(Resonance enhanced multi-photon ionization, REMPI)

扫瞄穿透X射线显微镜(Scanning transmission X-ray microscopy,STXM)

薄板层析(Thin layer chromatography,TLC)

穿透式电子显微镜(Transmission electron microscopy,TEM)

X射线荧光光谱仪(X-ray fluorescence spectroscopy,XRF)

X射线显微镜(X-ray microscopy,XRM)化学分析和仪器分析

凡主要利用化学原理进行分析的方法称为化学分析法;而主要利用物理学原理进行分析的方法则称为仪器分析法。当然这两者的界限难以截然划清,也有介乎二者之间的方法。

仪器一般指大型仪器,如核磁共振仪(见核磁共振谱)、X射线荧光仪(见X射线荧光光谱分析法)、X射线衍射仪、质谱仪(见质谱法)、电子能谱仪等。原子发射光谱法和原子吸收光谱法基本上采用湿法预处理,然后在相应仪器中测定,可认为是介于二者之间的方法,也可看作是化学法与仪器法的联合使用。不能认为用到仪器就是仪器分析。例如,重量分析开始于用天平称量样品,末一步再用天平称沉淀重量。

天平是物理仪器,称量是物理过程,但重量分析却是公认的典型化学分析法,原因是重量分析主要靠欲测离子与沉淀剂作用而定量析出沉淀。至于经典法一词,专指重量分析法和容量分析。其范围远狭于化学法。所以经典法仅是化学分析法的一部分,而不是全部。粗分为无机分析和有机分析两大类

天然产物和工业制品中的无机物,如岩石、矿物、陶瓷、钢铁、合金、矿物酸、烧碱等的分析属无机分析;石油、染料、塑料、食品、合成药物、中草药等的分析属有机分析。简言之,凡碳氢化合物及其衍生物的分析属有机分析,而除上述物质外的分析统属无机分析。不过,无机物中有时夹杂一些有机物质,而有机物也含有无机物质。例如,河水、海水中含有有机物,有些锰矿夹杂有机物,煤含有灰分,石油含有以络合物形式存在的金属,纸张中有无机填充物等。这类物品既用到无机分析,也用到有机分析。

还有一些方法对无机物质和有机物质同样有效,如气相色谱法便是其中之一。样品中一氧化碳、二氧化碳、氢、氮、氧、甲烷、乙烯、水气等在同一柱中,在选择的条件下可逐一分离或分组分离。奥萨特气体分析器也是如此,只是分离的原理不同。

痕量分析是指样品所含的量极为微少。一般在样品中含量多的为主要成分,含量少的为次要成分。E.B.桑德尔认为含量在1%~0.01%的为次要成分。有人认为在10%~0.01%的为次要成分。含量在万分之一(0.01%)以下称为痕量。痕量分析的动向趋于测定愈来愈低的含量,因此出现了超痕量分析,即含量接近或低于一般痕量下限。这名称只是定性的。定量或更明确的名称见下列规定:

痕量 10~10微克/克

微痕量10~10微克/克

纳痕量 10~10微克/克

沙痕量 10~10

微克/克微痕量分析尚另有一种意义,即使用微量分析的称样,而测定其中痕量元素(例如<10微克/克)。为与前述一词区分,后一词应称为微样痕量分析。①选择性最高,以至具有专一性,即干扰极少,这样就可以减少或省略分离步骤;

②精密度和准确度最高;

③灵敏度最高,从而少量或痕量组分即可检定和测定;

④测定范围最广,大量和痕量均能测定;

⑤能测定的元素种类和物种最多;

⑥方法简便,即最易操作而不需高度技巧;

⑦经济实惠,即要求费用少而收益大。但汇集所有优点于一法是办不到的,例如,在重量分析中,如要提高准确度,需要延长分析时间(如用重沉淀法纯化沉淀)。因为化学法测定原子量要求准确到十万分之一,所以最费时间。分析方法要力求简便,不仅野外工作(诸如地质普查、化学探矿、环境监测、土壤检测等)需要简便、有效的化学分析方法,室内例行分析工作也如此。

因为在不损失所要求之准确度和精密度的前提下,方法简便,步骤少,这就意味着节省时间、人力和费用。例如,金店收购金首饰时,是将其在试金石板上划一道(科学名称是条纹),然后从条纹的颜色来鉴定金的成色。这种条纹法在矿物鉴定中仍然采用。

当然,该法不及火试金法或原子吸收光谱法准确,但已能达到鉴定金器之目的。又如,糖尿病人的尿糖量可用特制的含酶试纸进行检验,从试纸的颜色变化估计含糖量的多寡,其方法之简便连患者本人也会使用。另一方面,用原子吸收光谱法虽然也能间接测定尿样中含糖量,但因为不经济而没有被采用。虽然有不少灵敏的和选择性强(甚至专一)的方法,但是如果欲测元素的浓度接近或低于方法的测定下限,则富集仍不可避免。富集方法很多,如升华、挥发、蒸馏、泡沫浮选(见痕量富集)、吸附(用分子筛、活性炭等)、色谱法、共沉淀、共结晶、汞齐作用、选择溶解、溶剂萃取、离子交换等。

在检出或测定之前,常常需要使欲测(或检出)物质与干扰物质彼此分离。重要的分离方法有蒸馏、溶剂萃取、离子交换、电渗析、沉淀、电泳等,大都与富集方法相同。富集可认为是提高浓度的分离方法。

隐蔽作用(见隐蔽和解蔽)虽不是分离,但其作用使离子失去其正常性质,即令该离子以另一形式存于反应体系中。然而在分析化学中分离之目的无非使干扰离子不再干扰,因此就广义而言,隐蔽及其相反作用解蔽应包括在分离范畴中。在分析化学中采用隐蔽和解蔽作用由来已久。重量分析、光度法、极谱法中均已应用,特别在点滴试验和络合滴定法中使用得更频繁。取样最重要的要求是有代表性,即取来欲分析的样品须能代表全体。均匀或容易混匀的物质取样自不成问题,气态和液态样品属于这一类。不均匀的固态物质,如矿石和煤炭等应按规定手续取样。否则,分析结果不能代表原物质,徒然浪费人力物力。野外矿石取样多由地质人员进行。所得大样在试验室中由分析人员按一定手续粉碎和缩分到小样。另一方面,有机元素燃烧法分析合成的纯样品则无此问题。

样品溶熔是第二步。溶熔包括溶解和熔融,也称分解。有些样品能溶解于水、酸或混合酸、碱,以及有机溶剂中。上述办法不能溶解的,可改用熔剂熔融。熔剂可分碱性(如碳酸钠)、酸性(如硫酸氢钾)、氧化性(如过氧化钠)和还原性的(如硫代硫酸钠)。如果欲分析的成分较易挥发或熔融温度高,对坩埚腐蚀严重,则可改用烧结,即将颗粒表面部分熔化。史密斯法用氯化铵和碳酸钙(1:8~12)与硅酸盐岩石混合和烧结,以测定其中的碱金属便是一例。有机化合物和生物样品可采用干法或湿法灰化。干法灰化为在充分氧气存在下加热至炭化并逐渐燃烧,或在较低温度用原子氧氧化(低温灰化)。湿法灰化利用氧化性酸(如硝酸、高氯酸、浓硫酸)氧化样品。干法、湿法各有其优缺点,须视样品而定。

三、求 混合离子(Mn2+,Al3+,Co2+)分离及鉴定 的原理和所用试剂

AL3+,Cr3+离子和Fe2+和Fe3+的锰+,Ni2+的,CO2+,Zn2+离子混合物的分离和鉴定2009-06-16 20:38概述

8种氯离子可溶于水,为0.3mol/ L的盐酸溶液中是不是氢硫化物沉淀,但与该角色的NH3-NH4缓冲溶液中的硫化氢,Al3+的和Cr3+生成的Al(OH)3和Cr(OH) 3沉淀,离子等。生成相应的硫化物沉淀。阳离子组合物,8种碱性硫化氢组分析的硫化氢系统或称为铁和铝的组中,也被称为第三基上的氢硫化物系统的分析程序

绝大多数这些阳离子是块的d的金属元素的阳离子,一个未成对电子的存在下,例如,其在水溶液中的阳离子呈现出一定的颜色,并且,使他们有一种倾向,形成一个强的络合离子。下表是这些阳离子和某些复杂的离子的颜色,但是如果测试溶液是无色的,但也不能排除的着色离子的存在下,因为当一些离子的含量是小的,或不同的颜色互补的现象发生,该溶液是几乎无色的。

离子色离子的颜色〔Cr(H2O)6] 3+蓝紫色的Fe(H2O)6] 2+浅绿色

率[CrCl(H2O)5] 2+绿色的[Fe(H2O)6] 3+薰衣草

有限公司(H2O)6] 2+玫瑰红的[Fe(OH)(H2O)5] 2+琥珀

有限公司(NH4)棕色[6] 2+氯化铁(H2O)5] 2+黄色

公司(NCS)4] 2+蓝绿色[FeSCN] 2+血红色

[CO(NH3)5(H2O)] 3+红色〔Mn(H2O)6] 2+粉红色

〔Ni(H2O)6] 2+浅绿色镍(NH4)6] 2+的蓝紫色

AL3除了上述8+和Zn 2+离子,和其他离子,不饱和的电子组态,第二外层d轨道的电子可以是全部或部分涉及的键,这往往表现出不同的价态,具有氧化还原性。离子的分离和鉴定,这些属性是非常重要的。如使用的Mn2+和Cr3+在碱性条件下可以减少被氧化为MnO2的形式,。在酸性条件下,NaBiO3氧化反应MnO4,用于识别的Mn2+的Mn2+。

分析

氢氧化钠,氢的性别元素铝,铬,锌氧化钾溶于过量的碱的分离与非性别中的作用元素。铬锰和氢氧化过氧化成四价锰和六价铬。

锰(OH)2+ 2H2OMnO2和Co(OH)3溶于HNO3+ H2O2→二氧化锰是不显着,减少可改善与H2O2在酸性溶液中的溶解度,反应如下:二氧化锰+ H2O2+ 2H+→Mn2+的+ 2H2O+ O22Co(OH)3+ H2O2+4 H+→的2CO2++ 6H2O+ O2在酸性溶液中ClO3的Mn2+氧化二氧化锰,铁,钴,镍分离。 3Mn2+ ClO3-+ 3H2O→3MnO2+ 6H++的Cl-作为一种还原剂为MnO2,然后还原对Mn2+紫色MnO4铋钠,氧化,识别的二价锰离子的特征的反应:2Mn2+ 14H与亚硝酸++ 5NaBiO3→2MnO4+ 5Bi3+ 7H2O+的5Na+使用不同的铁,钴,镍离子和氨的影响,将其分离。而钴和镍的溶解的三价铁离子与过量的氨作用只有氢氧化铁沉淀,生成相应的氨络合物离子。的

实验中使用2铁离子的存在下的反应来确认。在酸性溶液中,二价铁离子和铁氰化钾反应普鲁士蓝的沉淀,可以证实的存在下铁的第二顺序。血红色的硫氰酸铁离子显著。铁++ SCN-→[Fe(SCN)的] 2+ CO2+与SCN生成蓝绿色的[Co(SCN)4] 2-配离子可核实的CO2+存在。这种复杂的离子可以是煤戊醇萃取。

为了防止通过加入氟化钠,以便一起被屏蔽的铁离子形成[FeF6] 3-,和铁离子,铁离子的干扰。的

镍离子与二甲基乙二肟(HDMG),红色沉淀物的作用产生,以确定镍的存在。的

生成蓝色Cr2O72-氢过氧化物超过的铬氧化物CrO5,在乙醚中的蓝色,可确认存在有铬。 Cr2O72-+ 4H2O2+ 2H+→2CrO5+离子5H2O铝,确认在醋酸-醋酸钠缓冲溶液中的Al3+与铝试剂形成一个红色的沉淀物。硫代乙酰胺(TAA),一个

锌离子证实TAA水解硫离子,而ZnS是唯一的白色硫化物沉淀,并溶解在稀盐酸中。

设计分离AG+和Pb2+和Fe2+和Al3+,Zn2+的中,Fe3+,Cu2+的

第一次使用的硫化物FeS的溶解度差异PBS溶解在热的,饱和的乙酸铵溶液,溶于稀酸,而其余的是AGS

第二,以及适当的pH值上升,的Fe3+,的Fe(OH)3形式的沉淀,过滤,在滤液中加入过量的氨中和产生的Al(OH)3沉淀,过滤,并将滤液,加入适量的硫化钠,后酸化,锌硫化物溶于稀酸,但硫化铜的不溶性

硫化锌

(硫化锌)的化学式硫化锌。自然发生的闪锌矿锌硫化矿。

硫化锌仅是普通的白色金属硫化物,熔点为1700±20°C,密度4.102克/厘米3(25°C)

;在水中的溶解度小,易溶于盐酸,不溶于乙酸。硫化锌

流燃烧变换晶体,在其结构单元中,硫的生活锌原子构成的四面体,锌

还含硫四面体配位编号4的硫化氢气体。硫化铵(NH 4)2 S,在锌的盐溶液中加入

,为白色硫化锌沉淀:

的Zn 2+(NH 4)2 S→的ZnS+2 NH+ 4得到

含有微量的铜或银化合物,硫化锌晶体,可以发出不同的荧光彩色电视,示波器,和透视的移动设备可以是

(硫化铜)的CuS的硫化铜的化学式。黑色粉末或块状,密度为4.6克/厘米3;

不溶于水,稀酸,溶于热的稀硝酸或浓氰化钠溶液:3CuS+2 NH-

3+8 H+ 3Cu 2++2+3 S+4 H 2 O

2CuS+6 CN-→2CU(CN)- 2+2 S 2-+(CN)2

加热时会转化为氧化亚铜硫醚,Cu 2 S的。硫化氢气体进入的Cu 2+离子,在酸性溶液中,

可用黑色的硫化铜沉淀。它可以用来作为涂布在船的底部。

硫化铁

(硫化铁)的铁和硫的化合物称为二硫化铁,硫化

铁三硫化铁。

两个铁硫化物FeS 2,为黄色晶体,其主要成分的黄铁矿,反磁性。的

熔点黄铁矿为1171℃,密度为5.0克/厘米3,具有立方晶格,当一个非活性物质,在室温下,

温度升高变活泼,在空气中加热,氧化成三氧化二铁(氧化铁)和碳的

硫;在真空下加热至600℃,上述得到的硫。二硫化铁可以用于硫酸行业。

硫化亚铁硫化亚铁为黑褐色的色块倾斜; 1193?1199℃,密度为4.74克/厘米3,不溶于水,溶于酸的水溶液中,同时生成硫化氢很容易被氧化,在空气中加热,

在真空中加热到1100℃得到的上述硫。硫化亚铁可能是直接响应系统中的两个元素,

由亚铁盐水溶液与碱金属硫化物的作用而得。它可用于在实验室中发生硫

氢体,也可用于陶瓷和油漆颜料工业。

三硫化二铁Fe 2 S 3黄绿色固体,相对密度为4.3,强烈的热分解;

不溶于水,热水,分解成硫化亚铁,硫酸分解释放的情况下,硫化氢气体。

(leadsulfide)硫化铅化学式PBS中。方铅矿的主要成分。

黑色硫化铅的立方晶体,熔点为1114℃,密度为7.5克/厘米3,不溶于水和稀酸,溶解在浓硝酸。随着

碱和十二烷基硫酸钠(或硫化铵)是无效的,煅烧在空气中可被转换成一氧化铅;

成的过氧化氢的作用下的硫酸铅。的

金属引线和元素硫在加热的作用下,氢硫化物或硫化物钠(或硫化铵)

含有Pb 2+的解决方案可以有硫化铅。方铅矿是最重要的工业方铅矿的系统

铅原料的。作为半导体,可以使用高纯度的硫化铅。

硫化汞

(mercuricsulfide)化学式硫化汞。有黑色和红色两种晶体。在自然界中存在

朱砂红色硫化汞,朱砂朱砂也被称为密度8.10克/厘米3,583.5°C升华。

黑色的硫化汞密度7.73克/厘米3,并加热至386℃,即加上红色氧化汞的更改。

硫化汞溶解在盐酸或硝酸,但溶于王水:

3HgS 12盐酸+2 HNO 3→3 [的HgCl 4] 2-+6 H+ 3 S+2 NO+4 H?ò

分解,在空气中燃烧的汞和硫,硫化汞和硫的燃烧成二氧化硫。硫化氢

成酸性汞(II)盐溶液中,可以生成黑色的硫化汞,它是一个小的金属硫化物的溶解度在大多数

。硫化汞可用于塑料的着色,密封蜡,颜料也做。朱砂可以制定印泥。绝大多数

②硫化物

金属硫化物是不溶于水,难溶于酸。金属硫化物被分为三类,根据水中的溶解度。的

硫醚溶解于水:碱金属和碱土金属硫化物(K 2 S,硫化钠,MgS和CaS的,SRS,BAS),(NH4)2S

不溶于水和溶于稀酸,硫化材料:MNS,硫化物,Fe2S3,COS,硫化镍的硫化锌(从10-15到10-25的溶解度产品)。

不溶于水,不溶于稀酸硫化物的CuS,Cu2S,AGS,硫化镉,硫化汞,Hg2S,SNS,SNS2,PBS......

Al2S3和Cr2S3完全在水中水解,沉淀的Al(OH)3和Cr(OH)3沉淀,并释放H2S气体,所以实际得到的氢氧化物的水溶液中,而不是硫化物。

Al2S3+ 6H2O=除2A1(OH)3↓+ 3H2S↑

Cr2S3+ 6H2O= 2CR(OH)3↓+ 3H2S↑

因此,Al2S3,Cr2S3只干法制备。

硫化物的化学反应:

硫化钠+ H2O=硫氢化钠+氢氧化钠

氯化亚铁+(NH4)2S硫化亚铁↓+ 2NH4Cl

氯化亚铁+ H2S= FeS的↓+ 2HCl的

氯化铜+ H2S=的CuS↓+ 2HCl的

3CuS+ 8HNO3(浓缩)= 3Cu(NO3)3+ 2NO↑+ 3S↓+ 4H2O

3HgS+ 2HNO3+ 12HCl= 3H2 [HgCl4]+ 2NO↑+ 3S↓+ 4H2O

阿尔法

Alpha

参考资料:溶剂萃取