首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
移动式破碎机 2024-09-30 18:18:53

732型阳离子交换树脂钨酸钠(阴离子交换树脂分离钴镍)

一、型阳离子交换分离法

将含有镍的离交9mol/LHCl溶液,流经氯型强碱性阴离子交换树脂柱,换树由于铁、脂钨钴、酸钠树脂铜、阴离锌、交换铋等金属离子在盐酸溶液中形成相应的分离配阴离子,而被吸附在阴离子交换树脂柱中。钴镍镍在此条件下不形成配阴离子,型阳因而不被树脂所吸附,离交仍留在溶液中,换树由此可与上述金属离子得到分离。脂钨与镍一起进入溶液的酸钠树脂有碱金属,碱土金属以及钛、阴离钒、锰等。

AG50W阳离子交换树脂从6mol/LHCl-丙酮介质中吸附分离镍,镍的分配系数可达227。在同一条件下,易形成氯配阴离子的一些元素分配系数在1以下,而铁、钴、铜、锌、镉、汞、铅、铋、锰、钼、钒、镓、铟、铀等的分配系数不超过4;因此,镍可与上述元素得到完全分离。

二、分离和富集

钍和其他伴生元素的分离可用沉淀、萃取、离子交换和萃取色层等方法。

钍的沉淀分离方法很多。苛性碱、氢氧化铵、吡啶、六次甲基四胺都能使钍生成白色氢氧化物沉淀。小量钍可以用铝、铁为聚集剂,沉淀在pH3.5即开始形成,不溶于过量试剂。与钍形成配合物的有机酸如酒石酸等不应存在。此法可将钍与碱金属、碱土金属、锌、镍、铜、银等元素分离,用吡啶或六次甲基四胺还可将钍与稀土分离。在0.5~1.3mol/L硝酸或盐酸介质中,草酸浓度为10~50g/L时,钍成草酸盐沉淀而与铁、铝、锆、钛等元素分离,铀(Ⅵ)、稀土、钙同时沉淀。少量钍可用稀土和钙做聚集剂。草酸钍不溶于水和稀酸,但溶于过量的草酸铵溶液中。在pH≥1.5时,过氧化氢能沉淀钍为过氧化钍而与碱金属、钛、铀、锡、铍、稀土等元素分离,铈部分共沉淀。在6mol/L硝酸溶液中可用碘酸盐沉淀大量钍,在0.5~1mol/L硝酸溶液中,以亚汞为聚集剂,可用碘酸盐沉淀微量钍,铀(Ⅳ)、铈(Ⅲ)及稀土元素等不沉淀,钛、锆、铁、铌、钽、铀(Ⅳ)和铈(Ⅳ)同时被沉淀。碘酸钍不溶于过量试剂及强酸中,能溶于还原性酸中(如盐酸)。在稀盐酸溶液中,氢氟酸能将钍沉淀,成难溶的氟化钍,稀土元素同时被沉淀,与铌、钽、锆、钛、钨等元素分离。大量氟化铵存在时能使钪分离,氟化钍能溶于硼酸和硝酸中。在pH2~2.8的盐酸或硝酸介质中,有机试剂如苯甲酸、间-硝基苯甲酸等都能沉淀钍,与铍、锰、锌、镍、钴、铀、碱土金属等元素分离,严格控制溶液的酸度可与稀土元素定量分离。

萃取分离方法,适用于微量钍的分离。在饱和硝酸铝的1.5mol/L硝酸溶液中,用异丙叉丙酮[即异丙烯基丙酮(CH3)2C=CHCOCH3]萃取钍,除铀,钒及少量锆以外,几乎能与所有伴生元素分离。在pH>1的硝酸溶液中用等体积的0.25mol/LTTA(噻吩甲酰三氟丙酮)的苯溶液萃取钍,钋(Po)同时被萃取。另外在适当的介质中,磷酸三丁酯亦能萃取钍,与铀、镭等分离。在钍的3mol/LHCl溶液中用5g/L苯甲酰苯胲-三氯甲烷萃取钛使与钍分离。

萃取色层分离方法,同样也适用于微量钍的分离和富集。目前胺类萃取剂,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(国产胺型萃取剂);中性配位剂,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋树脂(苯乙烯-二乙烯苯为骨架,含有60%TBP共聚物)、5208萃淋树脂(异烷基磷酸二丁酯);酸性配位剂,P507(2-乙基己基磷酸单2-乙基己酯)等结合载体聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附树脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附树脂(聚二乙烯苯)、交联聚甲基丙烯酸型树脂和泡沫塑料等组成固定相,均能达到在一定浓度的硝酸溶液中富集钍分离钛、锆、铀、稀土等干扰离子。在分析实践中应用较好的是N263、P350、CL-TBP萃淋树脂和5208萃淋树脂等。N203和X-5型聚二乙烯苯或DA201树脂组成固定相,用2mol/LHNO3(1~7mol/L)上柱液通过色层柱,从而使钍与大量铀、锆、磷、铁和稀土等分离,最后用4~5mol/LHCl淋洗钍。P350与X-5型聚二乙烯苯组成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介质上柱可使钍与大量铁、铝、钙、镁、钼、铜,钛、稀土等元素分离,最后以5mol/LHCl解脱钍。CL-TBP萃淋树脂是在4mol/LHNO3(3~8mol/L)中富集钍与稀土、铌、钽等杂质分离,最后用3~5mol/LHCl解脱钍。5208萃淋树脂是在0.1~6mol/LHNO3中富集钍与大量铀、钛、锆、锌、钼(Ⅵ)、砷(Ⅴ)、稀土元素等分离,最后用0.1~6mol/LHCl淋洗解脱钍。

离子交换分离方法,也适用于微量钍的分离。在2~7mol/LHCl介质中,钛、锆、铀、稀土等在743大孔阳离子交换树脂上的分配系数与钍差别较大。因此,适用于钍与许多元素的分离,特别适用于钍与高量钛、锆和稀土元素的分离。根据试样中钛,锆和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去这些元素,用氯化铵溶液淋洗,使氢型阳离子交换树脂转变为铵型,最后以草酸铵溶液淋洗钍,用光度法测定钍。也有在8mol/LHNO3介质中,用742大孔阴离子交换树脂富集钍,分离铀和稀土等干扰,最后以水解脱钍,光度法完成测定。

三、阴离子交换分离-氨性底液极谱法

方法提要

试样经灼烧、酸溶分解,在2mol/LHCl介质中,锌以配阴离子形式吸附于阴离子交换树脂上,与镍、钴、锰、钒、砷等分离。铅、铁部分被吸附,镉同时被吸附。经1mol/LHCl淋洗交换柱,可分离绝大部分铜、铁,再用热水淋洗交换柱,锌先被淋洗,而镉仍吸附在树脂上而不影响锌的测定。在此条件下,用717型阴离子交换树脂分离富集锌,当溶液中存在100mgCu2+、Fe2+,5mgW6+、Mo6+、Sb5+、Bi3+,10mgSn2+,400μgIn3+,200μgCd2+、Tl3+,50μgSe4+、Au时,均可与锌分离。然后在氢氧化铵-氯化铵-亚硫酸钠底液中,用示波极谱仪导数部分进行锌的测定,峰电位约-1.20V(对银片电极)。如试样中铅量大于10mg,可在溶解试样时,加入2mL(1+1)H2SO4使铅呈硫酸铅沉淀而与锌分离。本法适用于0.001%以上锌的测定。

仪器

示波极谱仪。

银片作参比电极。

试剂

盐酸。

硝酸。

氢氟酸。

高氯酸。

氢氧化铵-氯化铵-亚硫酸钠混合底液称取12.5gNa2SO3和67gNH4Cl,用少量水溶解,加入250mLNH4OH,用水稀释至500mL,混匀。

717型阴离子交换树脂将80~100目717型阴离子交换树脂用20g/LNaOH溶液和(1+9)HNO3浸泡,处理杂质,然后用水洗至中性,按分析步骤装柱,进行空白试验检查后方可使用。

阴离子交换柱将717型阴离子交换树脂装入筒形漏斗,下接Φ8mm×100mm的交换柱,树脂床高约9cm,先用200mL水淋洗交换柱,漏斗上叠放滤纸后,再用2mol/LHCl平衡,备用(控制流速约1.5mL/min)。

锌标准储备溶液ρ(Zn)=1.00mg/mL配制方法见本章42.2.1锌的EDTA容量法测定。

锌标准溶液ρ(Zn)=100.0μg/mL由锌标准储备溶液稀释配制。

锌标准溶液ρ(Zn)=10.0μg/mL由锌标准储备溶液稀释配制。

校准曲线

分取0.00mL、0.25mL、0.50mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL锌标准溶液(100.0μg/mL),或0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL锌标准溶液(10.0μg/mL),分别置于25mL烧杯中,低温蒸至近干。加入5滴(1+1)HCl,盖上表面皿,微热,加入10.0mL氢氧化铵-氯化铵-亚硫酸钠混合底液和15.0mL水,摇匀,放置30min。倾出部分溶液于电解池中,选择适当电流倍率,用示波极谱仪导数部分测定,于起始电位-1.00V处记录峰电流值,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样置于瓷坩埚中,在550℃高温炉中灼烧1h。将试样转入100mL聚四氟乙烯烧杯中,用水润湿,加入10mLHCl,盖上表面皿,置于低温电热板上溶解20min。用少量水洗去表面皿,加入5mLHNO3和3mLHF,再加入1mLHClO4[如试样中铅含量大于10mg,改为加入2mL(1+1)H2SO4,继续加热溶解],加热蒸发至白烟冒尽,取下,冷却。

加入15mL2mol/LHCl,盖上表面皿微热溶解盐类,溶液冷却后倾入交换柱上进行过滤、交换。用1mol/LHCl洗涤烧杯和滤纸至无黄色,弃去滤纸后,继续用1mol/LHCl洗交换柱(洗尽铜、铁等干扰元素,洗液约需30~50mL)。然后用50mL热水淋洗锌(水加热至沸,稍待片刻,分次倒入漏斗),流出液用50mL烧杯承接,溶液在电热板上蒸发至小体积,用水吹洗烧杯壁,继续蒸发至近干。然后按校准曲线分析步骤操作,测得锌量。

锌含量的计算公式同式(42.2),校准曲线上查得锌量(单位为μg),公式中10-3改为10-6。

四、离子交换分离

将含铍的9mol/L盐酸溶液通过强碱性阴离子交换树脂时,可以有效地分离铜、钴、镍、镉、铬、铁、锰、锆和铀离子。铍和铝离子则保留于溶液中。

将pH3.5并含有EDTA和过氧化氢的溶液通过强酸性阳离子交换树脂(钠型),此时铍不形成稳定的EDTA配合物,而被吸附;铝及铁的EDTA配合物和钛与过氧化氢及EDTA的配合物都不被吸收,而与铍分离,被吸附的铍再用3mol/L盐酸淋洗。

参考资料:金元素在线分析仪