首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
镍钴分离 2024-09-30 18:27:26

732型阳离子交换树脂钨酸钠(阴离子交换树脂分离铁钴镍)

一、型阳离子交换分离法

将含有镍的离交9mol/LHCl溶液,流经氯型强碱性阴离子交换树脂柱,换树由于铁、脂钨钴、酸钠树脂铜、阴离锌、交换铋等金属离子在盐酸溶液中形成相应的分离配阴离子,而被吸附在阴离子交换树脂柱中。铁钴镍在此条件下不形成配阴离子,型阳因而不被树脂所吸附,离交仍留在溶液中,换树由此可与上述金属离子得到分离。脂钨与镍一起进入溶液的酸钠树脂有碱金属,碱土金属以及钛、阴离钒、锰等。

AG50W阳离子交换树脂从6mol/LHCl-丙酮介质中吸附分离镍,镍的分配系数可达227。在同一条件下,易形成氯配阴离子的一些元素分配系数在1以下,而铁、钴、铜、锌、镉、汞、铅、铋、锰、钼、钒、镓、铟、铀等的分配系数不超过4;因此,镍可与上述元素得到完全分离。

二、分离方法

分离铝的方法很多,常用的方法有氢氧化铵、苯甲酸铵、氢氧化钠等沉淀分离、离子交换分离以及萃取分离等,其中以铜铁试剂-三氯甲烷萃取法对于从大量铁、钛中分离铝的效果较好。

用氢氧化铵沉淀铝可使铝与硼、镁、碱金属、碱土金属,及一定量的镍、锰分离,沉淀的酸度为pH5~7。为了更好地控制沉淀的条件,常采用尿素或六次甲基四胺等弱氨性试剂,但铁、钛以及很多金属离子与铝同时沉淀,不能分开。因此,用这种方法分离铝必须和其他分离手段并用时方有效。

苯甲酸铵使铝沉淀,可与钴、镍、钒、锰和锌等元素分离,但铁(Ⅲ)也同时沉淀。为了防止铁(Ⅲ)沉淀,测铝溶液中应先加入次亚硫酸钠还原铁,再加苯甲酸铵沉淀铝。这样,大量铁虽可除去,但仍有少量铁(Ⅱ)很快地氧化为铁(Ⅲ)夹杂在铝沉淀中。因此必须将苯甲酸铝沉淀用酸溶解,在还原剂存在下,反复沉淀多次,才能使铁与铝完全分离。用苯甲酸铵沉淀铝,酸度应在pH3.8左右,加入次亚硫酸钠的量,以溶液中铁的颜色消失并过量0.2~0.3g为宜。

用氢氧化钠分离铝是沿用已久的方法,但分离并不很完全。为了减低氢氧化物沉淀对铝的吸附,通常在大量氯化钠存在下,小体积沉淀铁、钛等元素。即使如此,微克量的铝也难免不被吸附,特别是镁、镍、钙的氢氧化物沉淀对铝的吸附较大。分离方法是:将含铝的盐酸溶液,加热蒸发至体积为1~2mL,冷却,加入15gNaCl,搅拌均匀。加入10mL500g/LNaOH溶液,再搅匀后,加水稀释至60~70mL,用中速滤纸过滤,用洗液(250mL水中含2gNaCl、5gNaOH)充分洗涤沉淀,滤液酸化后测铝。

铜铁试剂又称亚硝基苯胲铵,在无机酸溶液中与很多金属离子包括铁(Ⅲ)、钛(Ⅳ)、钒(Ⅴ)、铀(Ⅳ)和锡(Ⅳ)等形成难溶性螯合物,此螯合物能用有机溶剂,如三氯甲烷、乙醚、乙酸乙酯、甲基异丁酮、邻-二氯苯等萃取。有机溶剂对金属螯合物的萃取能力与螯合物沉淀在酸中的溶解度有关,一般金属螯合物在强酸中的溶解度愈小愈易被萃取。萃取应在盐酸或硫酸溶液中进行,酸度通常约为10%(盐酸为1mol/L,硫酸为1.5mol/L)。这样可以保证微量铝也能与其他金属离子分离,酸度过低,例如pH>3.4时,铝亦被萃取进入有机相。铜铁试剂的用量,在理论上每0.1g铁只需要0.84g铜铁试剂。在实际工作中,铜铁试剂用量却要比理论值大,0.1g铁最少需要16mL60g/L铜铁试剂溶液,反应方能完全。铜铁试剂易于分解,配制时勿加热,萃取的全部过程均应在冷溶液中进行。

铝的分离,还包括离子交换分离和汞阴极电解等方法。离子交换分离是在9mol/LHCl中利用阴离子交换树脂使铝与铜、锌、镉、铁(Ⅱ)、铁(Ⅲ)、钴、锡(Ⅱ)、锡(Ⅳ)、锑(Ⅲ)、锑(Ⅴ)、锌、钒(Ⅴ)、钼(Ⅵ)、钨(Ⅵ)、铬(Ⅵ)、铀(Ⅵ)和锰(Ⅶ)等元素分离,铝不被吸附,交换后的溶液可测定铝。汞阴极分离是在硫酸或高氯酸溶液中以铂丝为阳极,汞为阴极进行电解,可使很多金属离子包括铁、铬、镍、铜、锡、钼、锌和铅等与铝分离,电流密度约为0.1~0.2A/cm2。上述两种方法测定铝时,分离杂质虽是有效的,但已很少使用。

三、离子交换分离

将含铍的9mol/L盐酸溶液通过强碱性阴离子交换树脂时,可以有效地分离铜、钴、镍、镉、铬、铁、锰、锆和铀离子。铍和铝离子则保留于溶液中。

将pH3.5并含有EDTA和过氧化氢的溶液通过强酸性阳离子交换树脂(钠型),此时铍不形成稳定的EDTA配合物,而被吸附;铝及铁的EDTA配合物和钛与过氧化氢及EDTA的配合物都不被吸收,而与铍分离,被吸附的铍再用3mol/L盐酸淋洗。

四、分离和富集

钍和其他伴生元素的分离可用沉淀、萃取、离子交换和萃取色层等方法。

钍的沉淀分离方法很多。苛性碱、氢氧化铵、吡啶、六次甲基四胺都能使钍生成白色氢氧化物沉淀。小量钍可以用铝、铁为聚集剂,沉淀在pH3.5即开始形成,不溶于过量试剂。与钍形成配合物的有机酸如酒石酸等不应存在。此法可将钍与碱金属、碱土金属、锌、镍、铜、银等元素分离,用吡啶或六次甲基四胺还可将钍与稀土分离。在0.5~1.3mol/L硝酸或盐酸介质中,草酸浓度为10~50g/L时,钍成草酸盐沉淀而与铁、铝、锆、钛等元素分离,铀(Ⅵ)、稀土、钙同时沉淀。少量钍可用稀土和钙做聚集剂。草酸钍不溶于水和稀酸,但溶于过量的草酸铵溶液中。在pH≥1.5时,过氧化氢能沉淀钍为过氧化钍而与碱金属、钛、铀、锡、铍、稀土等元素分离,铈部分共沉淀。在6mol/L硝酸溶液中可用碘酸盐沉淀大量钍,在0.5~1mol/L硝酸溶液中,以亚汞为聚集剂,可用碘酸盐沉淀微量钍,铀(Ⅳ)、铈(Ⅲ)及稀土元素等不沉淀,钛、锆、铁、铌、钽、铀(Ⅳ)和铈(Ⅳ)同时被沉淀。碘酸钍不溶于过量试剂及强酸中,能溶于还原性酸中(如盐酸)。在稀盐酸溶液中,氢氟酸能将钍沉淀,成难溶的氟化钍,稀土元素同时被沉淀,与铌、钽、锆、钛、钨等元素分离。大量氟化铵存在时能使钪分离,氟化钍能溶于硼酸和硝酸中。在pH2~2.8的盐酸或硝酸介质中,有机试剂如苯甲酸、间-硝基苯甲酸等都能沉淀钍,与铍、锰、锌、镍、钴、铀、碱土金属等元素分离,严格控制溶液的酸度可与稀土元素定量分离。

萃取分离方法,适用于微量钍的分离。在饱和硝酸铝的1.5mol/L硝酸溶液中,用异丙叉丙酮[即异丙烯基丙酮(CH3)2C=CHCOCH3]萃取钍,除铀,钒及少量锆以外,几乎能与所有伴生元素分离。在pH>1的硝酸溶液中用等体积的0.25mol/LTTA(噻吩甲酰三氟丙酮)的苯溶液萃取钍,钋(Po)同时被萃取。另外在适当的介质中,磷酸三丁酯亦能萃取钍,与铀、镭等分离。在钍的3mol/LHCl溶液中用5g/L苯甲酰苯胲-三氯甲烷萃取钛使与钍分离。

萃取色层分离方法,同样也适用于微量钍的分离和富集。目前胺类萃取剂,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(国产胺型萃取剂);中性配位剂,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋树脂(苯乙烯-二乙烯苯为骨架,含有60%TBP共聚物)、5208萃淋树脂(异烷基磷酸二丁酯);酸性配位剂,P507(2-乙基己基磷酸单2-乙基己酯)等结合载体聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附树脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附树脂(聚二乙烯苯)、交联聚甲基丙烯酸型树脂和泡沫塑料等组成固定相,均能达到在一定浓度的硝酸溶液中富集钍分离钛、锆、铀、稀土等干扰离子。在分析实践中应用较好的是N263、P350、CL-TBP萃淋树脂和5208萃淋树脂等。N203和X-5型聚二乙烯苯或DA201树脂组成固定相,用2mol/LHNO3(1~7mol/L)上柱液通过色层柱,从而使钍与大量铀、锆、磷、铁和稀土等分离,最后用4~5mol/LHCl淋洗钍。P350与X-5型聚二乙烯苯组成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介质上柱可使钍与大量铁、铝、钙、镁、钼、铜,钛、稀土等元素分离,最后以5mol/LHCl解脱钍。CL-TBP萃淋树脂是在4mol/LHNO3(3~8mol/L)中富集钍与稀土、铌、钽等杂质分离,最后用3~5mol/LHCl解脱钍。5208萃淋树脂是在0.1~6mol/LHNO3中富集钍与大量铀、钛、锆、锌、钼(Ⅵ)、砷(Ⅴ)、稀土元素等分离,最后用0.1~6mol/LHCl淋洗解脱钍。

离子交换分离方法,也适用于微量钍的分离。在2~7mol/LHCl介质中,钛、锆、铀、稀土等在743大孔阳离子交换树脂上的分配系数与钍差别较大。因此,适用于钍与许多元素的分离,特别适用于钍与高量钛、锆和稀土元素的分离。根据试样中钛,锆和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去这些元素,用氯化铵溶液淋洗,使氢型阳离子交换树脂转变为铵型,最后以草酸铵溶液淋洗钍,用光度法测定钍。也有在8mol/LHNO3介质中,用742大孔阴离子交换树脂富集钍,分离铀和稀土等干扰,最后以水解脱钍,光度法完成测定。

参考资料:选矿在线分析仪