首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
浮选专家系统 2024-09-30 20:34:27

再生资源回收(zr金属回收)

一、再生资源稀土具体是回收回收指哪些金属

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、金属镨(Pr)、再生资源钕(Nd)、回收回收钷(Pm)、金属钐(Sm)、再生资源铕(Eu)、回收回收钆(Gd)、金属铽(Tb)、再生资源镝(Dy)、回收回收钬(Ho)、金属铒(Er)、再生资源铥(Tm)、回收回收镱(Yb)、金属镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。

2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。

铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。

稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。

17种稀土元素名称的由来及用途

镧(La)��"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。

铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。

铈的广泛应用:

(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅

能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻

璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中

美国在这方面的消费量占稀土总消费量的三分之一强。

(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色

,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。

(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用

于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领

域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电

陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢

及有色金属等。

镨(Pr)��大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。

镨的广泛应用:

(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作

釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能

和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马

达上。

(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催

化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,

用量不断增大。

(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

钕(Nd)��伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。�

钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

钷(Pm)��1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。

钷的主要用途有:

(1)可作热源。为真空探测和人造卫星提供辅助能量。

(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电

源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、

制备荧光粉、度量厚度以及航标灯中。

钐(Sm)��1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。��钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。

铕(Eu)��1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。

钆(Gd)��1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。��钆在现代技革新中将起重要作用。

它的主要用途有:

(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。

(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。

(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。

(4)在无Camot循环限制时,可用作固态磁致冷介质。

(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。

(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。

另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。

铽(Tb)��1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。

主要应用领域有:

(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活

的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。

(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态

薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。

(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离

器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,

更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半

成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首

先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这

种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广

泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机

构和飞机太空望远镜的调节机翼调节器等领域。

镝(Dy)�� 1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用.

镝的最主要用途是:

(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提

高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为

必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。

(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的

激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺

镝的发光材料可作为三基色荧光粉。

(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使

一些机械运动的精密活动得以实现。

(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。

(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、

颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。

(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能

谱或做中子吸收剂。

(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应

用领域将会不断的拓展和延伸。

钬(Ho)��十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。�

�钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/∑RE>99.9%。

目前钬的主要用途有:

(1)用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上

发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的

是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质

是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。

(2)钬可以用作钇铁或钇铝石榴石的添加剂;

(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,

几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以

提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光

束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据

报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体

的水平已达到国际水平,应大力开发生产这种激光晶体。

(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化

所需的外场。

(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器

件在光纤通信迅猛的今天将发挥更重要的作用。

铒(Er)��1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:

(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学

纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态

4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出

1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,

1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为

下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,

如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补

偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒

光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业

化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的

迅猛发展,将开辟铒的应用新领域。

(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大

气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照

射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。

(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出

功率最高的固体激光材料。

(4)Er3+还可做稀土上转换激光材料的激活离子。

(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。

铥(Tm)��铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。�

�铥的主要用途有以下几个方面:

(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。

(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。

(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。

(4)铥还可在新型照明光源金属卤素灯做添加剂。

(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。

镱(Yb)��1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。�

�镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

镥(Lu)��1907年,韦尔斯巴赫和尤贝恩(G.Urbain)各自进行研究,用不同的分离方法从"镱"中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。�

�镥的主要用途有(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。

钇(Y)�� 1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣"新土"。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种"新土",命名为钇土(Yttria,钇的氧化物之意)。��

钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。

(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。

(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。

钪(Sc)��1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为"Scandium"(钪),钪就是门捷列夫当初所预言的"类硼"元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。��钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用"分级沉淀"法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。�

�用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。��

钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。��钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。��在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。��在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。��在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。��在玻璃工业中,可以制造含钪的特种玻璃。��在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。��

自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症稀土资源。

稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。

这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。

二、中国稀有稀土金属资源概况

我国稀有稀土矿产品种齐全、资源丰富。已查明的293个矿床中属特大型的1个,大型62个,中型90个,小型134个。其中轻稀土矿床,特大型1个,大型22个,中型35个,小型31个;重稀土矿床大型9个,中型11个,小型8个;锂矿床大型9个,中型7个,小型8个;铷矿床大型1个,小型1个;铯矿床大型1个,中型1个,小型1个;铍矿床大型2个,中型6个,小型31个;铌矿床大型6个,中型12个,小型20个;钽矿床大型9个,中型8个,小型16个;锆矿床大型3个,中型10个,小型18个。

我国的稀有稀土矿产储量常集中在少数几种矿床类型,甚至几个矿床内。对于轻稀土矿床,稀土元素储量集中在碱性岩-碳酸岩型矿床内,仅内蒙古白云鄂博矿床的LRE2O3储量约占全国总储量的92%。对重稀土矿床来说,储量主要集中在碱性花岗岩型及离子吸附型矿床内。仅一个内蒙古巴尔哲碱性花岗岩型矿床,其HRE2O3储量占全国储量的25%,占全国内生矿床HRE2O3储量的34%。离子吸附型矿床的HRE2O3储量占全国储量的26%。Li的储量绝大部分集中在盐湖锂矿中,占全国Li矿储量的86%,大部分储积在青海柴达木盆地内。在内生锂矿中四川甲基卡花岗伟晶岩矿床Li2O的储量占全国内生锂矿Li2O总储量的35%。对于铌矿,仅内蒙古白云鄂博矿床的Nb2O5储量即约占全国总储量的66%。对于锆矿,内蒙古巴尔哲内生矿床求得的ZrO2储量约占全国内生矿床ZrO2储量的95%。对于外生锆矿床,锆石储量绝大部分出在海南岛滨海砂矿。

我国稀有稀土资源的丰富程度可从表10-1我国与世界(除我国外)稀有稀土矿产储量对比中可以看出。表10-1中的国外资料除Be取自《矿产手册》(《Minerals Handbook》,1992~1993),Rb、Cs取自《矿产现状与问题》(《Mineral Facts and Problems》,1985)外,其余均取自美国矿业局汇编的《矿产品总结》(《U.S.Burean of Mines,Mineral Commodity Summaries》,1981~1994)。由表10-1数据可知,与国外相比,我国稀有稀土矿产储量相当大,除Zr储量小得多外,其他的RE、Li、Be、Nb、Ta、Zr、Rb、Cs都接近于国外有关矿产的储量。国内的储量级别由国家统一规定,上储量表的通常是A+B+C+D级储量的总和。稀有稀土金属上储量表的常是C+D级储量。表10-1中的国外储量同时列入储量和储量基础两项,前者又称为探明储量或可采储量,后者又称为次经济储量。由表10-1数据可看出,国内的储量(A+B+C+D)接近于国外储量和储量基础的总和。

表10-1我国与国外稀有稀土矿产储量对比单位:t

续表

前些年,国内传闻我国“稀有不稀”,近年来有报道说我国不缺这方面的矿产,稀有稀土金属足可保证国家建设需要。其根据多半就是上述储量数字。但实际情况不完全是这样,对储量数字需作进一步分析。

首先,表中一些矿种,如Be和Zr,储量仍很小,尤其是Zr,我国产出的锆石含放射性较高,质量稍次。另外,国内的储量资料是全国统一按系统呈报的,比较齐全。在国外,已发表的储量数据是由一个国家的某个单位甚至某个人收集统计的,容易漏掉矿床。

更为重要的是对比国内外储量时,应了解储量计算时根据的矿石的品位。下面列举我国与国外一些知名矿床的稀有稀土金属品位(表10-2,表10-3,表10-4,表10-5,表10-6,表10-7)以作比较,所列出的国内矿床,其稀有稀土金属品位在国内都是最高的。

表10-2几个知名矿床矿石的REE品位

表10-3几个知名矿床矿石的Li、Rb、Cs品位

表10-4几个知名矿床矿石的Be品位

表10-5几个知名矿床矿石的Nb品位

表10-6几个知名矿床矿石的Ta品位

表10-7几个知名矿床矿石的Zr品位

由上列诸表资料得知,我国白云鄂博碳酸岩型稀土矿床——世界最大的稀土矿床,矿石RE2O3品位低于国外的同类型矿床。同为花岗伟晶岩矿床,国外矿床矿石的Li、Rb、Cs品位较国内矿床要高许多,一般都在五倍以上。对于Be矿,除云南麻花坪热液脉矿床与国外矿床矿石BeO品位近似外,国内其他Be矿床的矿石品位也低得多。对于Nb-Ta矿,国外矿床的Nb2O5、Ta2O5品位普遍高于国内矿床。对于Zr矿也有类似情况。如果对国内矿床提高品位要求,则由此计算出的我国稀有稀土金属储量显然要小得多。大家知道,对相同类型矿床,矿石的品位愈高,矿石愈纯,愈易于选冶。相反,品位较低,选冶较难,成本增高。对品位较低矿石,开发利用价值相应要小。

已如前述,我国的稀有稀土金属储量常集中在少数几种矿床类型或几个矿床内,目前这些集中大量储量的矿床,有的因选冶成本高,经济效益较差,未能正规开发利用,如内蒙古白云鄂博矿床及湖北庙垭矿床的Nb、内蒙古巴尔哲矿床的HREE、Nb、Zr,四川甲基卡矿床的Li矿等。目前国内开发利用的,除白云鄂博矿床的REE及青海柴达木盆地的Li矿外,多是规模较小的矿床或是综合回收对象。对于REE,四川牦牛坪和山东微山矿,以其易采选,而经济效益较大。华南离子吸附型矿,遍地开花,成为地方小规模开采对象。新疆可可托海及柯鲁木特以前是开采Li矿的主要对象,规模都不大。江西宜春414和湖南尖峰岭等地也开发Li,是作为综合回收对象开发的。开采的Be矿更多是小型矿床。新疆可可托海矿床规模较大,但已开采多年,目前已没有多少保存储量。对于Nb,开发利用的是像江西黄山,广东台山、博罗,广西姑婆山等中小型矿床,开采对象多是风化壳矿。对于Ta矿,储量集中在广东、江西、福建、湖南等省,也多为中小型矿床。江西宜春414矿是我国最大的一个钽矿床,已得到开发利用,但其品位低,只有在综合回收Li、Be、Ta以及石英、长石等多种矿产情况下才有利可图。我国稀有稀土金属储量主要集中在几个大型矿床内,但这些大型矿床多未正规开发利用。白云鄂博矿床的稀土金属随铁矿开采,现在大量稀土矿石被保存在尾矿坝中,未得到充分利用。就国家发展情况看,白云鄂博矿床的稀土金属几百年也用不完,这是今后找矿评价工作值得注意的。国家以前执行的是计划经济,学习苏联经验,制定出一套矿石品位要求,按要求去进行找矿评价和求储量。人们也希望看到大型或特大型稀有稀土金属矿床。矿床类型不同、地区不同、经济发展和技术水平不同,对资源的需要程度也不同。从计划经济转向社会主义市场经济,这些问题将被充分地考虑。

需要指出,本文统计的矿床储量主要依据截至1997年底各省及自治区矿产储量表。对一些矿床来说该表所提供的数据并不确切。据笔者所知,有的矿床已开采多年,并无多少保有储量,但该表提供的储量数字仍相当大。

资源利用的另一个重要问题是资源浪费以及随之而至的环境破坏。现在有一些稀有稀土矿山采前没有地质资料,也不作详细设计,采后缺乏检查总结。有的乡镇领导大笔一挥即可批条开采,以致屋前屋后随便乱挖,废石尾矿乱扔乱堆。笔者所住的帐篷就曾遭遇民工所放的炮的轰击。只顾眼前利益,采富弃贫随处可见,使资源损失很大。保护资源、保护环境是国家的重要决策,望有关当局切实负起责任,做好这一关系子孙后代的工作,做到真正的可持续发展。

三、废弃金属是白色垃圾吗

不是的。废金属是可回收物。是指适宜回收循环使用和资源利用的废物。清洁的白色垃圾废旧塑料包装物可以重复使用,或重新用于造粒、炼油、制漆、作建筑材料等。回收利用符合固体废物处理的“减量化、资源化、无害化”的通用原则。

回收材料

世界大部分金属都能以再生金属的形式循环利用,工业发达国家再生金属产业规模大,再生金属循环使用比率高。由于市场需求强劲,中国有色金属产业的发展突飞猛进,中国已成为世界有色金属的生产和消费大国,中国的再生金属产业在世界再生金属产业的发展中有着举足轻重的地位。

银Ag,金Au,砷As,铋Bi,铬Cr,钴Co,铜Cu,铁Fe,铪Hf,铟In,铱Ir,钼Mo,锰Mn,铌Nb,镍Ni,钯Pd,铂Pt,铅Pb,硒Se,锡Sn,锑Sb,铊Ta,钛Ti,钒V,钨W,钇Y,锌Zn,锆Zr,镁Mg、铝Al、硅Si、磷P等元素。

参考资料:自动化分析仪