首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
锂矿加工 2024-09-30 18:42:41

再生资源回收(攀枝花金属回收)

一、再生资源非金属矿山环境地质问题

西南地区以非金属矿山企业最多,回收花金有11301个,攀枝占矿山企业总数的属回收53.6%。其中云南3918个,再生资源四川3260个,回收花金贵州2364个,攀枝西藏156个,属回收重庆1603个。再生资源重要的回收花金矿山企业有四川什邡磷矿、马边磷矿、攀枝宝兴大理石矿、属回收雅安花岗石矿、再生资源石棉花岗石矿、回收花金天全硫铁矿、攀枝江油硫铁矿、彭县蛇纹石矿、渡口熔剂灰岩矿、峨边玻璃用砂矿、江油水泥灰岩矿、峨眉水泥灰岩矿,云南富源硫铁矿、昆阳磷矿,贵州三岔河硫铁矿、拱里水晶矿、凯里玻璃用砂矿、水城熔剂灰岩矿、开阳磷矿,重庆歌乐山熔剂灰岩矿,西藏扎布耶硼砂矿等。这些矿山企业一般分布在交通相对方便的地区,如公路、铁路沿线、江河沿岸等地。其中化工非金属矿山如硫、磷矿山,以环境污染和水土流失较突出;非金属建材矿山如花岗石、大理石、水泥用灰岩、页岩、砂岩以及陶瓷粘土等矿山,矿渣量大,占压、破坏土地资源、破坏交通沿线景观以及形成滑坡、泥石流等环境问题突出。

(一)非金属矿山对资源的破坏

1.非金属矿山对地貌景观的影响和破坏

大规模非金属采矿活动特别是露采矿山,以及由采矿活动诱发的地质灾害,常使矿区地形、地貌发生较大改变,地貌景观遭受破坏,区域生态环境恶化。主干公路沿线和江河湖泊周边的采矿活动对地形、地貌景观影响尤其突出。西南地区大部分建材等非金属矿山位于公路沿线,采空区山坡形成一片片“白茬山”,严重影响了公路沿线视线景观,进而影响了西南旅游大区的形象。如云南滇池流域分布有昆阳磷矿、晋宁磷矿等大小几十家磷矿山和几十处采石场、采砂场,采矿活动不仅破坏植被,形成了大片的“光头山”,而且相当一部分采掘场地建在坡度35°以上的陡坡上,崩塌、滑坡多发,水土流失严重,使滇池生态环境受到严重影响。滇池流域内森林植被从1975年的25.1%下降到1988年的21.2%,滇池平均每年泥沙淤积量33.1×104m3,导致湖底抬高、湖面缩小,使“高原明珠”黯然失色。除上述外,云南丘北普者黑风景区曾有几家采石场在二级保护区内,使景区的山水景观受到显著影响;文山县老君山自然保护区内过去有大小矿山企业约10家,其中砒霜厂就有3家,对森林植被造成很大破坏;大理苍山海拔2500m以上过去曾有数家采石场开采大理石,亦形成一片片“白茬山”,采矿废石还加剧了苍山溪沟泥石流的暴发频率,加剧了洱海泥沙淤积。

重庆市嘉陵江观音峡一带采石场位于北碚区。该区有优美的地质景观及典型的地质剖面。近几十年来,在观音峡两岸先后兴建嘉陵水泥厂、江北县水泥厂、富皇水泥厂,主要采掘嘉陵江两岸下三叠统嘉陵江组和飞仙关组石灰石矿。目前,在嘉陵江两岸形成3个大的开采区,占地面积分别为0.66×104m2,0.6×104m2,0.84×104m2,体积分别为105.6×104m3,42×104m3,67.2×104m3(任幼蓉等,2006)。大规模开采石灰石矿,使开采区基岩裸露,无植被覆盖,昔日的青山变成今日的荒山、秃山,严重破坏了观音峡一带的自然地质景观(照片3-13)。同时,在开采区形成高70~160m的高陡边坡,局部地段稳定性较差,对水北公路、212国道和嘉陵江航道构成威胁。

2.非金属矿山对土地资源占压和破坏

西南地区非金属矿山占压和破坏土地资源相当突出,总面积为57855.92hm2,占总占压面积的30.67%。其中云南省为25398.42hm2,四川省20941.43hm2,贵州省2334.89hm2,西藏3755hm2,重庆5436.18hm2。以云南和四川占压面积较大,重庆、西藏和贵州较小。

四川涪江在绵阳市游仙区境内流长37.5km,涪江河床宽缓,多砂砾和卵石,故该区段成为绵阳市建筑用砂石的重要产地。近20年来在游仙区境内采砂石达750×104m3,回采砂金约7.5×104g,从业人员达10000余人,形成2134处采砂石点,平均采矿深度为5m,最深处达10m,造成大面积耕地、滩涂损毁,总面积达1075.75hm2。造成了区内植被破坏、水土流失、河道阻塞等危害,并影响了绵阳市的城市安全。

照片3-13观音峡全景

四川石棉县广元堡石棉矿区,大量采矿形成的破碎山体及堆积如山的矿渣,占地面积达200hm2,不仅破坏了区域的生态环境,而且形成了极大的泥石流隐患,严重威胁着108国道及石棉县城的安全(照片3-14)。

照片3-14四川石棉县广元堡石棉矿区

(二)非金属矿山环境污染

西南地区是我国产磷大区,硫矿资源亦比较丰富,硫、磷矿产是非金属矿产中重要污染源。

1.云南磷矿山环境污染

云南是产磷大省,仅滇池流域内就有5个磷矿区33家磷矿采选企业,开采剥离的废土石和尾矿均沿采场附近的山坡和箐沟随意堆放。各矿山总计年排渣量为640.28×104t。这些积存的废土石和尾矿,经大气降水淋溶,产生的污水中主要污染物是氟和总磷。据云南省地质环境监测总站资料,磷矿尾矿(磷石膏)浸出液中含Cd0.118mg/L,Pb0.027mg/L,总磷14757mg/L,F5308mg/L,对周围地表水和地下水造成了污染。

滇池周缘的磷矿选厂,除上蒜磷矿选厂废水达标排放和晋宁磷矿选厂部分循环使用外,其余大部分选厂废水都任意排放于周围的沟溪中或排进尾矿库后又散流于周围的沟溪中。滇池周缘磷矿大都处于滇池补给、径流区,选矿废水及任意排放的矿浆随地表径流流入附近水体,污染地表水;或径流中渗入地下,污染地下水。地表水和地下水最终汇入滇池,加重了滇池的污染。

滇池水体含磷高,促进了绿藻的生长,滇池绿藻最多时达几米厚,大量的绿藻消耗了水中的氧,导致鱼类难以生存,水体因污染而发臭。近年来,国家已拨巨资治理滇池,仍未获得预期效果,仅局部水体得到改善。究其原因,环境恶化的现象在滇池,但根子在矿山。

2.四川南部硫铁矿山对环境的污染

四川省南部煤系硫铁矿山污染问题亦相当突出。该地硫铁矿山始建于1950~1960年,开采至今造成了矿山及其周围生态环境严重恶化。

(1)土法炼硫黄污染。整个矿山到处都是炼硫黄土窑,炼硫黄后的有害气体经烟囱直接排放到空气中,矿区大气中硫化氢及二氧化硫气体浓度大大增加,土壤酸化,矿山周围植物难以生存,附近农作物难以生长。炼硫黄后的尾渣堆积如山(仅叙永县大树硫铁矿区堆积的尾渣已近1000×104m3),充满整个矿区,并且矿渣直接向地表径流排放,严重污染了环境。

(2)废水污染。川南硫铁矿区在硫铁矿开发时,未经处理的坑道水和大量选矿废水、尾矿渣、炼硫黄废渣往往通过地表溪沟排入河流,导致河水受到严重污染,黄而浑浊,并致使河床不断抬高,危及下游农田和建筑物。而入炉矿石中近10%的硫生成硫酸盐被水溶解进入江河,加重了河水的污染。

(3)废气污染。川南硫铁矿区的大气污染主要是采用小土炉炼硫黄引起的,由于炼硫黄生产方式原始,资源利用率很低,硫回收率在30%~40%之间,只有8%~10%的硫进入炉渣,其余以气态形式排入大气。根据工业污染调查资料,大树硫铁矿炼硫黄废气中,年排SO2高达9248t,仅此一项折纯硫4642t,不仅浪费了资源,而且严重污染和破坏了矿区周围环境和生态平衡。该矿职工1985年体检中,总患病人数为60.8%,其中青壮年土炉操作工中患肺气肿、支气管炎、咯血、鼻炎等疾病的人数达90%(蒋俊,1999;李学仁,1980)。这表明区域内大量炼硫黄废气的无序排放,形成了以二氧化硫、硫化氢为主的大气污染带,严重影响了职工的身体健康。

目前,解决废气污染的途径只有尽快停止土法炼硫黄生产,引进无烟炼硫黄技术。该项目是开发硫铁矿资源、保护环境的一项新技术,该技术可使二氧化硫每小时排放量低于34kg,硫化氢每小时排放量低于1.3 kg,且炼硫黄的操作者也感受不到刺鼻的烟味,对职工劳动保护也非常有益。在使用这项新技术的同时,也降低了区域内酸性废水的污染负荷,对矿区酸雨状况的改善也将收到良好的效果。

川南硫铁矿区矿渣每年仍以近百万吨的速度增加,矿区内的生态环境已遭到严重破坏。生态恢复工程就是在纯尾矿的环境中掺土和不掺土作对比试验,选择出如水蜡烛、无叶节节草等能在纯尾矿矿渣堆上生长繁殖的植物,恢复植被,转化粉尘污染和有毒物质,增进土壤肥力,改变小区气候,使“熟化”后的土地可进行种植和养殖,以求从根本上达到生态恢复工程的社会效益;同时通过对炼硫黄废渣和硫精砂尾矿的研究,开展资源的回收利用,使废渣中的铁含量提高到铁矿标准,使其具有开发价值,这样,既减少了资源的浪费,又增加了企业效益,并且减轻了环境的污染负荷。

(三)非金属矿山地质灾害

西南地区非金属矿山地质灾害以四川较突出,其次为贵州、云南、重庆和西藏。

1.非金属矿山滑坡地质灾害

非金属矿山滑坡地质灾害规模较大的有四川省峨眉金顶水泥厂石灰石矿山。该矿山自1970年投产以来,直至1990年前后一直采用大爆破,而且没有采取过任何减震措施。强大的爆破震动作用在边坡上,破坏了边坡岩体的完整性和稳定性,加之受降雨影响,目前已发育有严重的滑坡地质灾害(表3-19)。

表3-19峨眉水泥厂石灰石矿山滑坡地质灾害统计

西采区滑坡为一大型岩质牵引式滑坡,滑坡体已整体下滑,滑距达160m(李云贵等,2004)。从滑坡滑动前的地形图可知,滑前边坡前缘为直线形的陡壁,临空的陡壁高达20~25m,宽190m。为厚层块状灰岩构成,垂直厚度30~40m,厚层灰岩之下存在软弱夹层(已泥化的泥质粉屑灰岩),并在坡体下方720m采矿平台内侧坡脚被剥露;坡体东侧被罗沟切割临空,西侧被溶蚀沟槽切割,坡体中有走向为45°~135°区域构造裂隙发育,坡体已被切割成块,720m平台与坡上陡壁平面相距约120m,与顶部形成高差100余m的高陡中高边坡。因此,在2002年3月15日连续3日的小雨后上方坡体突然下滑,发生了西采区“3.15”滑坡,造成8人死亡,大量矿山设施被掩埋。滑体沿软弱结构面高速下滑160m(平距)坠落在720m平台上,前缘抵达670m平台,平面呈舌状。滑坡的坡体平面上呈三角形,面积12440m2,体积37.32×104m3。滑体堆积面积6.06×104m2,滑体厚10~30m,体积约60×104m3;清理后现残留体积约40×104m3(照片3-15)。

照片3-15四川峨眉金顶水泥厂西采区“3.15”滑坡

滑坡后缘陡壁呈直线形,走向NW45°左右,为张性结构面构成,溶蚀较强烈,陡壁面被溶蚀呈凹凸不平,并悬挂有石钟乳。滑壁高15~30m。滑动方式为顺层滑动,滑坡体呈整体下滑,前缘滑体滚落,后缘滑体尚有部分块体仍保留着原岩的层状构造,滑体顶部保留有残坡积土层和植被。滑体与滑壁间分布有滑动崩落的堆积物。东侧滑床裸露,滑面平整光滑,见方解石薄膜,滑动面形态为微弧线型,滑面方位角22°~26°,倾角27°~31°,上缓下陡,滑面擦痕清晰可见,擦痕方向与地层倾向和滑面倾向一致为NE22°,滑面由下部软硬相间岩组中的软弱结构面构成,滑带的物质为含泥粉砂屑、生物碎屑灰岩及泥砂质粉砂屑,以坚硬的中—厚层状生物碎屑岩为其滑床,滑体由上部厚层生物碎屑灰岩组成。滑坡后壁陡崖下,降雨后见地下水沿滑面呈侵润状溢出(图3-7)。滑坡的滑面完整,未见破裂面,在滑面中部770m高程处见一竖井状溶洞,洞径30m,洞口呈半圆形,垂直深度15m,洞底侧壁有支洞发育。该洞系本次滑坡将上覆岩体滑脱后而出露。

该次地质灾害发生后,开展了矿山地质环境勘查评价,找出了地质灾害发生原因,制定了下一步的安全开采方案。

此外,四川南部叙永地区硫铁矿山滑坡地质灾害亦较严重。如叙永大树硫铁矿1990年3月底,河西段老鹰岩坡脚出现了数条地表裂缝,发展迅速,由于地表开裂滑动,造成该矿职工宿舍垮塌20余间,100余户住房以及地面、墙壁发生裂缝和严重倾斜。目前又有443户职工住房以及矿部俱乐部等建筑物出现破坏或受到威胁。

图3-7四川峨眉金顶水泥厂西采区滑坡现状示意图

1—第二软弱层(泥质层);2—第三软弱层(泥质层);3—溶蚀沟;4—滑坡堆积体;5—下二叠统六段灰岩;6—下二叠统五段灰岩;7—水泥灰岩

地质灾害形成除与该处起伏较大的地形地貌及软硬相间的三叠系飞仙关组、松软的第四系坡积层等复杂的地质环境条件有关外,还与人为活动因素——地下采矿密切相关。地下采矿(含煤)顶板变形塌陷,使上覆岩层产生破坏和地表沉陷,是造成和诱发多种灾害最主要的活动因素。大树硫铁矿区在20世纪90年代遍布小煤井。根据小煤窑日产煤量和开采时间估算,小煤窑已累计采出煤量约4×104t,折算采空面积达3.6×104m2。根据我国其他煤矿资料显示,一般采空区面积达1000~3000m2,地表就有可能产生移动和变形。现有地面产生3条裂缝的位置基本与采空区相符。这说明地表产生裂缝是由小煤窑长期开采所致,并诱发了覆盖层移动和变形。

同时,该区灾害类型较多,除崩塌、滑坡外,尚有山洪和泥石流(含水石流)、环境污染、河流堵塞、河床抬高、公路路面毁坏,尾矿渣占压土地等环境地质问题(照片3-16)。

照片3-16大树硫铁矿矿渣被冲入河中

2.非金属矿山泥石流地质灾害

西南地区非金属矿山泥石流地质灾害以暴雨型为主,以老矿山比较突出。如贵州开阳磷矿山、四川石棉矿山都曾发生过规模较大的泥石流地质灾害。

1995年6月24日深夜,贵州省开阳县金钟镇连降特大暴雨,诱发泥石流、滑坡,体积约200×104m3。金钟镇及开阳磷矿大面积受灾,冲毁厂房、住宅11606m2,淹埋27179m2,淹没矿井4910m,设备645台套,冲毁供水管线21800m,供电通信主干线7.6km,公路77km,桥梁2座,河堤10km,涵洞36个,受灾464户,共计13012人,死亡25人,伤18人,直接经济损失2.05亿元。

四川新康石棉矿亦发生过泥石流。该矿位于雅安市石棉县南大洪沟下游山坡上,大洪沟为其排土场和尾矿库。为了水石分离,在排土场上段修建了截洪坝和引洪隧道;下游采用定向爆破法修筑了拦渣大坝和泄洪道:库内现已有矿渣和尾矿堆积物2100×104m3。2001年4月6日因上游修理排泄隧道,遇下雨,因临时向下游泄洪,引发了矿渣泥石流(水石流),矿渣泥石流部分冲垮了拦渣坝,下泻30×104~50×104m3,使下游竹河淤高8m,沿河电站等企业受损,直接经济损失100多万元,并威胁到下游南桠河沿岸及石棉县城的安全。四川省省委、省政府非常重视,投入480万元,于2001年9月完成了应急治理,主要工程包括:①采用铅丝块石笼修复了拦渣大坝(被冲垮段修成了泄洪道)(照片3-17);②库内清理了流水通道;③加高了上游截洪坝,修复了排洪隧道;④在上游增设了格栅坝。通过上述治理工程初步解除了该尾矿库的泥石流威胁。

照片3-17四川石棉县新康石棉矿尾矿坝上的泄洪道

3.非金属矿山崩塌地质灾害

非金属矿山崩塌地质灾害常与不规范、不合理的开采有关。2001年9月6日,贵州省六枝特区新窑乡鸭塘村关仲田大坡采石场发生崩塌,15人死亡,2人受伤。崩塌体长约73m,宽75m,厚5~15m,总方量约2×104m3。该采石场出露地层为下三叠统永宁镇组薄—中层夹厚层状灰岩,夹数层2~5mm泥岩,岩石中发育143°和225°两组裂隙。该崩塌的发生主要由于不利的岩层组合条件,层间夹有软弱层,溶蚀裂隙发育,由于水的入渗岩层强度降低;同时不合理的人类工程活动,使20世纪90年代初修建的简易公路老切坡,局部或大部切断了软弱层,农民自行采石形成临空面,使原已十分脆弱的岩体平衡被打破,瞬时快速崩塌,酿成地质灾害。

2003年2月16日23时30分,四川省宜兵市筠连县巡司镇巡司村七组联办水泥厂东侧危岩体突然发生崩塌,毁坏水泥厂厂房500m2,3人死亡、1人轻伤的严重灾害。损坏或埋没大量矿山设备,造成直接经济损失200万元。崩塌体积约500m3,崩落块石呈不规则形,直径一般3m左右,最大可达6m,崩塌现场最大块石体积约100m3。巡司镇距筠连县县城14km,地形、地貌属溶蚀构造低中山。出露地层为二叠系茅口组(P2m)中厚层状灰岩夹生物碎屑灰岩,岩体产状为215°∠18°。灰岩岩石节理裂隙发育,岩体完整性差。1992年巡司联办水泥厂修建时,对所在地山体斜坡进行了一定的削坡处理,水泥厂厂房修建于高约20m的陡崖边,石灰岩体内发育3组节理裂隙,受节理面及岩层面的影响,岩体被切割成大小不等的危岩体,长期以来,地下水运移于裂隙之中,侵蚀岩体,使岩体相互之间抗剪强度降低,在重力作用下,危岩体脱离母岩体发生崩落,形成了此次崩塌灾害。

目前崩塌岩体虽基本稳定,但在崩塌另一侧(水泥厂采石场边)仍存在上千方危岩体,在采石放炮及降雨的诱发作用下,有可能再次发生崩塌,直接威胁着水泥厂厂房及工作人员的安全,应进行避让。

四川省攀枝花市攀钢石灰石矿位于把关河右岸山体中上部,是攀钢辅助原料的生产基地。矿区地形陡峻,构造复杂,岩体破碎。地层岩性为二叠系灰岩,呈单斜产出,倾向与坡向一致,岩层倾角23°。该矿采用穿孔、爆破等方式进行露天开采,年开采石灰石矿大约120×104t。

1980~1988年短短的8年间,采场西侧山体连续发生3次较大规模的崩塌,崩塌体总量达398×104m3。第1次崩塌发生于1980年11月8日,位于+1400m平台东部之上。主要沿节理裂隙和层面发生,形成的崩塌体长46m,宽65m,厚6~35m,体积5×104m3。形成原因在于采场+1400m水平采用硐室爆破,沿走向形成的1400m水平台阶切断了矿层的“根脚”,使采场坡脚形成了一高约245m的临空面,从而使得上部原本就较为破碎的岩体失去支撑而产生塌滑和崩落;第2次崩塌发生于1981年6月10日,主要在第1次崩塌的基础上发展而成,此次崩塌体方量392×104m3,其形成原因基本与第1次崩塌的形成类似;第3次崩塌位于采场西北F8断层以西,发生时间为1988年10月13日,崩塌体南北长100m,东西宽350m,崩塌方量约1.0×104m3,爆破震动过大和高边坡开挖仍是其形成的主要原因。

3次崩塌堆积体覆盖了采场面积的三分之一,使矿山西部开采的1400~1363m4个生产台阶全部中断开采,采场东西长度减少450m,2800×104t的优质矿石被压覆,给矿山交通和开采带来极大困难。现西侧边坡形成高约100m的陡崖,其上部出现较为明显的龟裂区,稳定性较差。另外,崩塌堆积体由于结构松散,堆积体坡度较大,稳定性较差,在雨水的作用下易形成滑坡或泥石流灾害。

4.非金属矿山地面塌陷地质灾害

非金属矿山地面塌陷与其他类型矿山相似,都与采空区有关。加之水文地质条件和爆破震动的影响所致。

1999年6月13日10时50分,四川省什邡市红白镇四村五组水磨沟斜坡地面突然发生塌陷,形成一直径约5m、深约6m的圆形塌陷坑,造成金河磷矿岳家山分矿住房一间陷落和住在其中的外来人员3口被陷落掩埋。另外,水磨沟塌坑斜坡上尚居住有四村五组13户村民,绝大部分居民房屋出现裂隙、地面开裂,裂缝宽0.1~3cm不等,多在0.2~0.8cm,长几米到十几米不等,多呈北东-南西向,部分呈北西-南东向。混凝土地面开裂沉陷,房屋的纵横墙交接处、墙体的门窗等构造薄弱部位有开裂现象。地面塌陷的原因与采空区顶板变形和采矿爆破震动有关。

综上所述,西南地区能源矿山环境地质问题以水污染、空气污染、滑坡、泥石流、地面塌陷以及占压土地资源为主,金属矿山环境地质问题以重金属元素污染、滑坡、泥石流、水土流失等为主,非金属矿山环境地质问题以景观资源破坏、土地资源破坏、硫、磷化工原料污染和滑坡、泥石流等地质灾害为主,表明不同类型矿山形成的环境地质问题不同(表3-20)。

表3-20西南地区主要矿山环境地质问题

续表

续表

续表

续表

续表

二、高炉煤气如何回收利用

高炉煤气洗涤废水的处理技术

高炉炼铁过程产生的大量炉气中含有一定量的一氧化碳气体(CO>20%),故称高炉煤气。高炉煤气中含有大量的可燃性成分并夹杂有大量的灰尘,温度通常为150~400℃。从炉顶排出的废气一般先经重力除尘器后,再进行洗涤处理和深度除尘。洗涤处理是通过在洗涤塔或文氏管中的气、水对流接触实现煤气的洗涤和冷却。洗涤冷却后的水就是高炉煤气洗涤废水。这种废水水温高达60℃以上,主要杂质是固体悬浮物、尘泥(瓦斯泥)、氧化物、焦炭粉等。除此之外,还含有一部分无机盐及酚、氰、重金属等有毒物质,由于该废水水量大、污染重,必须进行处理,并尽可能循环使用[1]�。�

1治理现状

目前大、中型高炉煤气洗涤废水的沉淀处理可分为自然沉淀和混凝沉淀。

1.1自然沉淀法

首都钢铁公司、攀枝花钢铁公司、湘潭钢铁公司、上海第一钢铁厂等的高炉煤气洗涤废水均采用自然沉淀为主的处理方法。莱芜钢铁厂高炉煤气洗涤废水过去靠两个D=12m的浓缩池处理,未达到工业用水及排放标准,后来改用平流式沉淀池进行自然沉淀,沉淀效率达90%左右,出水悬浮物含量小于100mg/L,冷却以后水温约40℃,水的循环率达90%,除个别指标(如Pb、酚)有时超标外,处理后的废水基本可达标排放。国外高炉煤气洗涤废水的处理大多数采用自然沉淀方法[2],特点是废水靠重力排入沉淀池或浓缩池,处理后经冷却塔冷却后循环使用,出水悬浮物SS<85mg/L,循环率达96%。整个系统设计成闭路循环,运行期间没有排污。自然沉淀法的优点是节省药剂费用,节约能源;缺点是水力停留时间长,占地面积大,对用地紧张的企业不宜采用;另外,当瓦斯泥颗粒过细时,自然沉淀后的水中悬浮物含量偏高,输水管道、水泵吸水井积泥较多,冷却塔和煤气洗涤设备污泥堵塞现象较严重。

1.2混凝沉淀法

混凝沉淀也是一种广为采用的处理方法,如武汉钢铁厂、宝山钢铁总厂、首都钢铁公司等的高炉煤气洗涤废水多采用混凝沉淀法。武钢高炉煤气洗涤废水处理指标:投加聚丙烯酰胺0.5mg/L,沉淀池出水悬浮物小于50mg/L;本钢投加无机和有机高分子絮凝剂,沉淀效率达98%;宝山钢铁总厂采用混凝沉淀法净化后可使水中悬浮物由2000mg/L降到100mg/L以下,总循环率达97%,废水处理系统运行正常,处理效果良好,但所使用的进口水处理药剂价格昂贵;首钢高炉煤气洗涤废水采用聚丙烯酰胺(投量为0.3 mg/L)进行混凝沉淀,沉降效率可达90%以上,当循环时间较长和循环率较高时,聚丙烯酰胺和少量的FeCl3复合使用,可去除富集的细小颗粒,取得满意的处理效果。日本扇岛地区钢厂的高炉煤气洗涤废水首先用粗粒分离机把粗颗粒分离出来,然后加苛性苏打提高pH值,再向凝聚沉淀槽注入高分子凝聚剂,把Fe和Zn等变成Fe(OH)2和Zn(OH)2的形态沉淀下来。为去除污染环境的Zn,要使pH值保持在7.5~8.5范围内。混凝沉淀处理过的废水,经冷却塔冷却后循环使用。处理后的水悬浮物含量SS<30mg/L。德国蒂森钢铁公司和鲁奇公司的高炉煤气洗涤废水处理采用曝气法。曝气的目的是在废水进入沉淀池之前,将废水中的游离CO2吹脱,使溶解在水中的碳酸盐析出,以便在沉淀池中去除。曝气池停留时间10~20min。沉淀池出水悬浮物SS为10~20mg/L,停留时间18.9min。该方法与自然沉淀法相比不但悬浮物的去除率高,水中细颗粒悬浮物可有效去除,而且对其它污染物(如酚、氰、重金属)的去除效率也有较大程度提高;水力停留时间长、占地面积大的矛盾虽然有所缓解,但仍然没从根本上予以解决。

2新型处理技术的开发

废水中悬浮物的去除效率取决于固液分离速度,而固液分离速度则取决于悬浮物颗粒的成长粒度和密度。成长粒径越大、密度越高则意味着水处理效率越高。根据絮凝动力学,传统处理技术中由于絮体成长过程的随机性,在絮体粒径增大的同时,其有效密度呈指数关系急剧降低。目前国内所研究的其他高效絮凝技术,虽然颗粒凝聚速度有所提高,絮体成长粒径有所增大,但仍然没有从根本上解决絮体粒径增大,有效密度急剧降低这一矛盾。而通过改变悬浮颗粒成长过程的动力条件和物理化学条件来限制凝聚过程的随机性,形成高密度的团粒状絮凝体--结团絮凝体,可大幅度提高固液分离速度。该项新型处理技术称为结团凝聚工艺或结团造粒流化床工艺。关于该工艺的理论研究和在给水处理、污泥浓缩方面的实验及应用已有不少成果[3~5],在高浓度悬浮物废水的结团流化床处理方面也取得了可喜成果。对陕西略阳钢铁厂高炉煤气洗涤废水的处理结果表明:在PAC投量为0.5~1.5mg/L、PAM投量为0.06~1.05mg/L条件下,水力负荷(水流上升速度)可高达116cm/min以上,总停留时间仅为2min左右,而出水浊度则低于12NTU。对该厂的选矿废水处理,在PAC投量为0.75mg/L、PAM投量为0.375mg/L时,水力负荷或表面负荷可高达112cm/min以上,总停留时间亦为2min左右,出水浊度低于2NTU。采用结团造粒流化床工艺处理上述两种废水,其表面负荷比传统处理工艺可提高10倍左右。对洗煤废水的处理,表面负荷亦可高达70cm/min以上,出水浊度小于40NTU,总停留时间小于5min,表面负荷比传统处理工艺亦可提高6倍以上。

该项新型处理技术对于解决目前重点污染源的污染问题具有广阔的应用前景,因这类废水如上述的煤矿洗煤废水、冶金矿山的选矿、尾矿废水、钢铁企业的煤气洗涤废水等都具有水量大、污染重的特点,利用该技术不仅可去除废水中的悬浮污染物和大量其它污染物如重金属、酚、氰等解决污染问题,而且可实现废水的重复使用,节约和充分利用水资源,产生显著的环境效益和社会效益。

三、金红石(Rutile)

一、概述

地壳中含钛1%以上的矿物约有80多种,但具有工业利用价值的主要是金红石和钛矿。

金红石成分为TiO2,含Ti为60%、O为40%,常含铁、铌、钽等。晶体呈粒状或针状,集合体为粒状或致密块状。呈褐红色,含铁高时呈黑褐色,硬度为6,密度为4.2~4.3g/cm3。富铁的黑色变种称铁金红石;含铌、钽的变种(常含铁)称铌铁金红石或钽铁金红石。

金红石矿床可分为砂矿床和变质矿床。砂矿床依成因又分为:海滨砂矿、冲积砂矿、残坡积砂矿等类型。具有工业价值的是海滨砂矿,矿床分布范围大,产状较规则。海滨砂矿的主要含钛矿物是金红石和钛矿,伴生有锆英石、独居石等。目前世界上90%的金红石产量和30%的钛铁矿产量均来自海滨砂矿。

变质矿床是含钛的粘土岩、侵入岩和喷出岩在发生变质时,由于钛元素富集结晶作用形成金红石和钛铁矿。

世界钛的资源85%~90%为钛铁矿(包括钛渣),10%~15%为金红石。世界上金红石储量分布相对较集中,巴西钛矿石储量(以锐钛矿为主)居世界首位,占世界总储量的64.8%,意大利占10.9%,澳大利亚占9.1%,南非占3.9%,原苏联占3.9%。

澳大利亚是世界上金红石的主要生产国,金红石资源主要分布在东部海滨中部的海岸滩砂矿床中,金红石含量为18~20kg/m3、钛铁矿为15~16kg/m3。

美国的弗吉尼亚州的罗宾宗科普变质型矿床富含金红石和钛铁矿。塞拉利昂舍尔勃里超大型海滨砂矿延长56km,金红石储量为300万t,TiO2平均含量1.2%。

随着选矿技术的发展,一些含TiO2品位低的矿床以及伴生的金红石都可得到回收利用。如意大利榴辉岩中的金红石矿床,美国科罗拉多州斑岩铜矿床伴生的金红石,我国南墅石墨矿金红石综合回收等。

我国钛资源十分丰富,总储量约为5.5亿t。我国钛资源总储量的95.8%是攀西地区钒钛磁铁矿,钛铁矿和金红石仅占4.2%。金红石储量约300万t,居世界第八位,主要产地为山西代县、湖北枣阳、河南西峡和方城等地。截至1999年底河南省金红石储量见表3-13-1。

表3-13-1河南金红石矿资源状况表(万tTiO2/亿t矿石)

金红石、钛铁矿的一般工业要求见表3-13-2。

表3-13-2钛矿床一般工业要求

二、金红石的主要用途及质量标准

1.金红石的主要用途

金红石和钛铁矿是冶炼金属钛、制造钛白粉以及电焊条焊药等重要原料。金红石和钛铁矿的主要用途见表3-13-3。

表3-13-3金红石和钛铁矿的主要用途

2.产品质量标准

由原生矿和砂矿经选矿富集获得的天然金红石精矿,供制造电焊条和制取金属钛及其化合物用的质量标准,以及砂矿钛铁矿精矿质量标准见表3-13-4。

表3-13-4中国钛精矿国家标准

注:①TiO2>57%,CaO+MgO<0.6%,P<0.045%作为一级品;②TiO2>52%,Fe2O3<10%,P<0.025%作为一级品。

三、金红石矿石的选矿

金红石主要赋存在钛锆砂矿中,以海滨砂矿为主,其次为内陆砂矿。钛锆砂矿是原生矿经风化作用形成的,具有易采易选、生产成本低、产品质量好及伴生矿物种类多,综合回收价值大等优点。钛锆砂矿是目前世界上金红石、钛铁矿、锆英石及独居石等产品的主要来源。钛锆砂矿中常伴生的矿物有:磁铁矿、赤铁矿、石英、云母、角闪石、辉石、石榴子石、铬铁矿、磷灰石等。

由金红石、钛铁矿、锆英石等组成的砂矿选矿有粗选和精选两个阶段。

粗选的目的是为精选厂提供粗精矿。粗选厂入选的矿石首先要除渣、筛分、分级、脱泥及浓缩等,然后进入粗选流程选别。粗选厂一般与采矿作业纳为一体,组成采选厂。为适应砂矿床特征,一般粗选厂均建成移动式的。钛锆砂矿粗选一般选用处理量大、回收率高,又便于移动式选厂应用的设备,多数用圆锥选矿机和螺旋选矿机,少量用摇床。粗选抛掉了密度低的脉石矿物,获得重矿物含量达90%左右的重矿物混合精矿。

精选的目的是将粗精矿中有回收价值的矿物进行有效的分离及提纯,达到各自的精矿质量要求,使之成为商品精矿。精选作业分为湿式精选和干式精选。

湿式精选作业包括有摇床或螺旋选矿机重选;湿式磁选预先选出部分易选钛铁矿;在粗精矿中加入氢氧化钠、盐酸、稀氢氟酸、焦亚硫酸氢钠等药剂进行高浓度搅拌,达到清除矿物污染,提高精矿效果的目的;浮选作业用于造锆英石、独居石的精选。

干式精选作业适用于矿物组成简单的粗精矿。干式精选作业包括磁选、电选等。电选用于金红石与锆英石的分离、难选钛铁矿及锆英石、独居石等矿物的精选。干式磁选通常是首先采用弱磁选选出强磁性矿物磁铁矿,然后采用中磁选选出大部分磁性较强又比较易选的钛铁矿,强磁选用于部分磁性较弱的钛铁矿及独居石与非磁性矿物锆英石、白钛矿等的分离。

下面例举几个金红石选矿厂实例。

例1纳勒库帕选矿厂(澳大利亚)

纳勒库帕(Narecoopa)选矿厂位于澳大利亚金岛的一个海滨砂矿。矿石中重矿物约占50%,有用矿物主要有锆英石和金红石,其次是白钛矿、钛铁矿、磁铁矿、石榴子石和锡石。选矿厂分粗选厂和精选厂两部分。

采出的原矿预先筛分(4mm),筛上产物丢弃,筛下产物给至32台福特(Ford)型螺旋选矿机粗选,粗选中矿再经12台螺旋选矿机再选。两次螺旋选矿机精矿用砂泵扬至3台吉尔(Gill)型磁选机磁选。磁性产品为钛铁精矿,非磁性产物经过Linatex喷射冲击箱擦洗,再送至8台摇床选别。摇床精矿为锡精矿,次精矿为含锆英石、金红石的粗精矿。摇床中矿返至本作业,尾矿返至中矿再选的螺旋选矿机再选。粗选流程见图3-13-1。

图3-13-1纳勒库帕金红石公司湿选厂流程

粗精矿采用高压电选、强磁选及风力摇床干选联合流程精选,获得锆英石和金红石精矿。精选流程见图3-13-2。

图3-13-2纳勒库帕金红石公司干选厂流程

例2金红石公司采选厂(塞拉利昂)

被开采的矿山位于塞拉利昂首都弗里顿东南的莫格维摩(Mogbweno)海滨砂矿床。整个矿层含TiO2大于2%,伴生的钛铁矿和锆英石含量低未被回收利用。采出的矿石经二次洗矿预处理,擦洗机排出的细粒部分经高频振动筛筛分,筛上+1mm物料作为尾矿排除,筛下产物送至水上浮动湿选厂湿选,第二段湿选在岸上选矿厂(摇床)进行。摇床精矿过滤,干燥后干选(精选作业)。干选厂处理矿石18.7t/h,金红石精矿产量13.2t/h,精矿品位TiO2为96%,ZrO2和Fe2O3的含量小于1%。

塞拉利昂年产105t金红石精矿,选矿厂生产流程见图3-13-3。

图3-13-3塞拉利昂金红石公司选矿厂精选流程

例3枣阳金红石矿选矿厂

湖北枣阳金红石矿是我国目前最大的金红石原生矿床。矿石产于富含金红石变质基性岩的原生矿床。矿石中与金红石伴生的有少量钛铁矿、磁铁矿、榍石、白钛矿、黄铁矿、磷灰石等。脉石矿物主要为石榴子石、角闪石、绿泥石、云母等。金红石多为粗细粒级不均匀嵌布,-15μm占24%,与其他矿物紧密嵌布,给选别带来困难。选厂的工艺流程为重—磁—浮联合流程,见图3-13-4。

图3-13-4枣阳金红石原生矿选矿流程

例4北海选矿厂

北海选矿厂是我国最大的海滨砂矿精选厂,原设计生产能力为日产钛精矿60t。该选厂除产钛铁矿精矿外,还有锆英石精矿、独居石精矿、金红石精矿等。北海选矿厂的粗精矿全部是收购的。收购的粗精矿分两类,一类为海滨砂矿产品(咸水矿),另一类为内陆砂矿产品(淡水矿)。本地区土法生产粗精矿采用三角槽洗选,粗精矿品位TiO2>48%。精选工艺流程见图3-13-5。

图3-13-5北海选矿厂生产流程

四、金红石的深加工产品——钛白粉

钛白粉是一种优质的颜料,它的反射率高,覆盖力强,广泛用于油漆、涂料、造纸、塑料和橡胶工业。目前白色颜料仍以钛白粉为主。钛白粉是用金红石、锐钛矿经硫酸法或氯化法生产的,分为金红石型和锐钛矿型钛白粉。

金红石型钛白粉为微淡色色泽,密度为3.9~4.2g/cm3,折射率为2.71,吸油率为16~18g/100g,平均粒径为0.2~0.3μm。

锐钛型钛白粉颜料为冷蓝白色,密度3.7~4.1g/cm3,折射率2.55,吸油率18~30g/100g,平均粒径0.18~0.3mm。

金红石型钛白粉颜料性能优于锐钛型钛白粉颜料。钛白粉的主要用途见表3-13-5。

表3-13-5钛白粉的主要用途

钛白粉的生产有硫酸法和氯化法两种。硫酸法生产钛白粉是1923年和1925年分别在法国和美国投入工业化生产的。1949年美国杜邦公司开始研究氯化法生产钛白粉工艺,并于1956年工业化。1951年加拿大魁北克铁钛公司采用高钛渣作硫酸法制钛白粉原料取得成功。硫酸法和氯化法生产钛白粉的工艺流程见图3-13-6和图3-13-7。

图3-13-6硫酸法生产钛白粉的原则工艺流程

图3-13-7氯化法生产钛白粉的原则工艺流程

我国钛白粉工业开发较晚,目前全国约有51家生产钛白粉的厂家,均是钛铁矿或高钛渣为原料用硫酸法生产钛白粉,对高钛渣原料要求见表3-13-6。产品以锐钛型钛白粉为主,属低档钛白粉。由于金红石酸溶性差不适于用硫酸法生产钛白粉,适用于氯化法工艺。

表3-13-6高钛渣化学成分规定(ZBH31001-87)

注:三级品适用于攀枝花地区钛矿生产的高钛渣。

氯化法工艺是高温冶金过程,在900~1000℃温度下,用固定床或沸腾床的氯化设备,用氯气氯化金红石或人造金红石,制得含杂质的粗TiCl4,再用蒸馏法或化学处理剂精处理,制得纯净的TiCl4。然后是气相氧化制取钛白粉,这是氯化法工艺的主要环节和关键所在,是奠定产品质量的基础。在1200℃以上的温度下,四氯化钛在氧化炉中与氧气进行气相反应,制得钛白粉。反应中先生成锐钛型钛白粉,再在高温下转化成金红石型钛白粉。加入适量的晶型转化剂三氯化铝,可加速其锐钛型转化成金红石型。转化后的金红石型钛白粉,经粉碎、分级、表面处理、洗涤、干燥即得到高档的金红石型钛白粉。

氯化法制取钛白粉我国目前仍处于工业化试验阶段,在锦州已建成了我国第一条氯化法钛白粉生产线。在制取四氯化钛方面我国已积累了多年的实际生产经验,不论是溶盐氯化炉,还是沸腾氯化炉技术都已过关。存在的问题主要有:氯气在高温下是腐蚀性很强的气体,反应器的材质问题难以解决;在氧化过程中,生成的TiO2颗粒附着在反应器壁上,使TiO2颜料性能变差,且扰乱反应器内气流使反应不均匀,严重时会堵塞反应器,使生成被迫停止,此难题至今仍未得到彻底解决;操作条件很难控制和选择等。尽管氯化法技术难度大,生产工艺复杂,但产品质量好、生产效益高、三废排放量很少,产品更具有竞争力。

河南省生产钛白粉厂家有长葛化工厂、偃师钛白粉厂、焦作化工总厂等,但生产规模小,工艺落后,仅能生产少量低档钛白粉。

目前我国钛白粉需求为19万t/a,而国内生产能力为13.35万t/a,且主要是锐钛型钛白粉。国内需求的金红石型钛白粉主要依赖进口,售价为19000~20000元/t。

五、河南省金红石矿的开发利用

河南省金红石储量较多,但开发利用水平较低,仅西峡八庙金红石矿区水峡矿段被开发利用。其选矿工艺为磁选—重选—酸洗的流程,获得金红石精矿TiO2为95.05%,杂质S为0.039%,P为0.028%,满足天然金红石二级品要求。此选厂规模为日处理50t,按生产300天计,年产精矿仅200t。目前我国金红石需求量1万t/a,全国金红石产量为4000t/a,因此金红石的市场需求量较大。金红石精矿目前售价为5000元/t左右。

对方城县五间房金红石矿,北京有色金属研究总院、河南省地矿厅中心实验室、中国地质科学院郑州矿产综合利用研究所等科研单位都进行过选矿试验。五间房金红石为风化壳型砂矿,分南、北两个矿体。南部复杂,金红石嵌布粒度细;北矿体矿石类型简单,金红石嵌布粒度较粗。

北京有色金属研究总院采用的选矿流程为:重选—浮选—磁选—重选—酸洗。获得的精矿指标为:TiO2为92.19%(金红石TiO2为90.21%);S为0.048%,P2O5为0.01%;回收率为40.59%。杂质含量高,S含量达到天然金红石精矿四级品标准;回收率低。

河南省地矿厅中心实验室进行了多方案选矿流程试验,包括有:直接浮选—酸浸—强磁选;脱钙—浮选—酸浸—强磁选;重选—浮选—精矿分别酸浸—强磁选。其中最后一个选矿流程获得选矿指标较好,精矿产率为1.88%;精矿金红石TiO2为89.06%;金红石TiO2回收率为74.30%。未进行杂质含量分析。

地科院郑州矿产综合利用研究所采用的流程为:擦洗—重选—浮选—磁选—酸洗。

小型试验的指标为:产率为1.5%;全钛品位为92.17%;金红石品位为90.80%;金红石回收率为62.13%;杂质含量,S为0.012%,P为0.03%,Fe2O3为0.65%。产品质量达到国家标准(YB839-87)二级品要求。同时综合回收铁精矿,产率为4.85%、全铁品位为59.66%。

主要参考文献

[1]《非金属矿工业手册》编辑委员会,非金属矿工业手册(上、下册),冶金工业出版社,1992.12。

[2]《矿产资源综合利用手册》编辑委员会,矿产资源综合利用手册,科学出版社。2000.2。

参考资料:智能化选矿