首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
锂矿加工 2024-09-30 18:33:20

化学品处理回收(回收金属化学)

一、化学如何利用废电池提取化学试剂

废电池中含有许多重要的品处化学物质如铜、锌、收回收金属化二氧化锰、化学氯化铵等,品处若能很好处理,收回收金属化可从中获得许多有用物质。化学根据电池的品处结构,可按以下方法进行处理。收回收金属化

1、化学收集铜帽:取下废电池盖,品处用小刀除去沥青,收回收金属化用钳子慢慢把碳棒拔出,化学取下铜帽集存,品处可做为实验或生产硫酸铜等化工产品的收回收金属化原料。

2、提纯氯化铵(NH4CI):用小刀把废电池外壳剥开,取出里边的黑色物质(它是由二氧化锰MnO2、炭粉、氯化铵、氯化锌等组成的混合物),然后加水(每节电池的黑色物质加水约50毫升),搅拌溶解,澄清后,进行过滤。把滤液加热蒸发,至滤液中有晶体出现时,改用小火加热,并不断搅拌(以防局部过热致使氯化铵分解)。待容器中剩下少量氯化锌(ZnCI2),如欲获得较纯的NH4CI,可利用NH4CI在350℃时升华的性质,把它和ZnCI2分开。

3、提纯二氧化锰:把在过滤时所剩余的黑色沉淀物,用水冲洗5-6次后放入铁瓢中。先用小火烘干,再在搅拌下用强火灼烧,以除去其中所含炭粉和有机物。到不冒火星时,再灼烧5-10分钟,冷却后即得MnO2。

4、制取锌粒:把从废电池剥下的铁壳,用水浸,洗去浆糊状物质。然后把锌壳敲扁。集中放在铁瓢中,加热至500℃左右(锌的熔点为419.4℃),锌即熔化,氧化物等杂质浮在表面,用铁丝把它刮去后,迅速地倒在一个打有许多小孔的铁彭瓢中,并不断地来回振摇铁瓢。液锌穿过铁瓢小孔,流入盛有冷水的缸内冷却,立即形成光亮的锌粒沉积在缸底。取出晒干,装备用或出售。

废电池回收利用技术简介

1.锌锰干电池

(1)湿法冶金法

该法基于Zn,MnO2可溶于酸的原理,将电池中的Zn,MnO2与酸作用生成可溶性盐进入溶液,溶液经过净化后电解生产金属锌和电解MnO2或生产其它化工产品、化肥等。湿法冶金又分为焙烧-浸出法和直接浸出法。

焙烧-浸出法是将废电池焙烧,使其中的氯化铵、氯化亚汞等挥发成气相并分别在冷凝装置中回收,高价金属氧化物被还原成低价氧化物,焙烧产物用酸浸出,然后从浸出液中用电解法回收金属,焙烧过程中发生的主要反应为:

MeO+C→Me+CO↑

A(s)→A(g)↑

浸出过程发生的主要反应:

Me+2H+→Me2++H2↑

MeO+2H+→Me2++H2O

电解时,阴极主要反应:

Me2++2e→Me

直接浸出法是将废干电池破碎、筛分、洗涤后,直接用酸浸出其中的锌、锰等金属成分,经过滤,滤液净化后,从中提取金属并生产化工产品。

反应式为:

MnO2+4HCl→MnCl2+Cl2↑+2H2O

MnO2+2HCl→MnCl2+H2O

Mn2O3+6HCl→2MnCl2+Cl2↑+3H2O

MnCl2+NaOH→Mn(OH)2+2NaCl

Mn(OH)2+氧化剂→MnO2↓+2HCl

电池中的Zn以ZnO的形式回收,反应式如下:

Zn2++2OH-→ZnO2-→Zn(OH)2(无定型胶体)→ZnO(结晶体)+H2O

(2)常压冶金法

该法是在高温下使废电池中的金属及其化合物氧化、还原、分解和挥发以及冷凝的过程。

方法一:在较低的温度下,加热废干电池,先使汞挥发,然后在较高的温度下回收锌和其它重金属。

方法二:先在高温下焙烧,使其中的易挥发金属及其氧化物挥发,残留物作为冶金中间产品或另行处理。

湿法冶金和常压治金处理废电池,在技术上较为成熟,但都具有流程长、污染源多、投资和消耗高、综合效益低的共同缺点。1996年,日本TDK公司对再生工艺作了大胆的改革,变回收单项金属为回收做磁性材料。这种做法简化了分离工序,使成本大大降低,从而大幅度提高了干电池再生利用的效益。近年来,人们又开始尝试研究开发一种新的冶金法--真空冶金法:基于废电池各组分在同一温度下具有不同的蒸气压,在真空中通过蒸发与冷凝,使其分别在不同温度下相互分离从而实现综合利用和回收。由于是在真空中进行,大气没有参与作业,故减小了污染。虽然目前对真空冶金法的研究尚少,且还缺乏相应的经济指标,但它明显克服了湿法冶金法和常压冶金法的一些缺点,因而必将成为一种很有前途的方法。

2.镍镉电池

Ni-Cd电池含有大量的Ni,Cd和Fe,其中Ni是钢铁、电器、有色合金、电镀等方面的重要原料。Cd是电池、颜料和合金等方面用的稀有金属,又是有毒重金属,故日本较早即开展了废镍隔电池再生利用的研究开发,其工艺也有干法和湿法两种。干法主要利用镉及其氧化物蒸气压高的特点,在高温下使镉蒸发而与镍分离。湿法则是将废电池破碎后,一并用硫酸浸出后再用H2S分离出镉。

3.铅蓄电池

铅蓄电池的体积较大而且铅的毒性较强,所以在各类电池中,最早进行回收利用,故其工艺也较为完善并在不断发展中。

在废铅蓄电池的回收技术中,泥渣的处理是关键,废铅蓄电池的泥渣物相主要是PbSO4,PbO2,PbO,Pb等。其中PbO2是主要成分,它在正极填料和混合填料中所占重量为41%~46%和24%~28%。因此,PbO2还原效果对整个回收技术具有重要的影响,其还原工艺有火法和湿法两种。火法是将PbO2与泥渣中的其它组分PbSO4,PbO等一同在冶金炉中还原冶炼成Pb。但由于产生SO2和高温Pb尘第二次污染物,且能耗高,利用率低,故将会逐步被淘汰。湿法是在溶液条件下加入还原剂使PbO2还原转化为低价态的铅化合物。已尝试过的还原剂有许多种。其中,以硫酸溶液中FeSO4还原PbO2法较为理想,并具有工业应用价值。

硫酸溶液中FeSO4还原PbO2,还原过程可用下式表示:

PbO2(固)+2FeSO4(液)+2H2SO4(液)→PbSO4(固)+Fe2(SO4)3(液)+2H2O

此法还原过程稳定,速度快,还可使泥渣中的金属铅完全转化,并有利于PbO2的还原:

Pb(固)+Fe2(SO4)3(液)→PbSO4(固)+2FeSO4(液)

Pb(固)+PbO(固)+2H2SO4(液)→2PbSO4(固)+2H2O

还原剂可利用钢铁酸洗废水配制,以废治废。Ni-MH电池、新型的锂离子电池随着近年手持电话和电子设备的发展得到了大量的应用。在日本,Ni-MH电池的产量,1992年达1800万只,1993年达7000万只,到2000年已占市场份额的近50%。可以预计,在不久的将来,将会有大量的废Ni-MH电池产生。这些废Ni-MH电池的正、负极材料中含有许多有用金属,如镍、钴、稀土等。因此,回收Ni-MH电池是十分有益的,有关它们的再生利用技术亦在积极开发中。

科技尤其是信息技术的发展,使得世界对电池的需求只会增多而不会减少,随之造成的电池污染和天然能源的消耗也将大大增加。各种回收利用技术虽日臻完善但毕竟治标不治本。因此科学家们提出了发展有利于环境保护与可持续发展的新型绿色环保电池。新型绿色环保电池是指近年来已投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的金属氢化物镍蓄电池、锂离子蓄电池、正在推广应用的无汞碱性锌锰原电池和可充电电池都属于这一范畴;正在研制开发的聚合物锂或锂离子蓄电池、燃料电池、电化学贮能超级电容器等也可列入这一范畴。

从普莱德发明第一只铅蓄电池以来,化学电池已经有了140年的历史,其家族也日益壮大。但是,大量生产电池而造成的资源消耗和废电池所带来的环境污染也是有目共睹的。早在1992年,巴西召开的世界环境发展大会上通过的21世纪议程中就已明确提出了可持续发展的方针。与地球和谐相处,走保护环境和可持续发展的道路,是工业发展的大势所趋。加强废电池的环境管理:出台相应的法规政策并不断完善和发展废电池回收技术,扩大回收范围,即使尚无能力处理的也要有相应的措施,如填埋处理等。回收技术应朝着降低成本、尽量避免二次污染的方向发展。同时走发展新型绿色环保电池之路:发展高能量、无污染的绿色电池,在制造之初就将环境污染和资源消耗控制在最小。从而使生产和再生利用形成一个良性循环,才能真正做到利于民又无害于民、无害于自然。

二、化学作业回收金属废弃物 调查报告

关于废电池的调查报告

随着科技的不多的进步,社会的不断发展。电池已经成为当今世界必不可少的东西。电池在带来便利的同时,也带来了一些环境问题。这个寒假,我搜集了一些资料,现整理如下:

一、废电池的危害

科学调查表明,一颗钮扣电池弃入大自然后,可以污染60万升水,相当于一个人一生的用水量。而中国每年要消耗这样的电池70亿只……

目前我国电池生产企业有1400多家,1999年已达到150亿节。我国约有3.66亿个家庭每年大约需要电池近44亿节。,而且多数在国内消耗。与世界不少国家相比,我国废电池回收率极低。据了解,我国生产的电池有96%为锌锰电池和碱锰电池,其主要成分为锰、汞、锌、铬等重金属。废电池无论埋在大气中还是深埋在地下,其重金属成分都会随渗液溢出,造成地下水和土壤的污染,日积月累,会严重危害人类健康。

二、废电池的回收

据环保专家介绍,在废电池中每回收1000克金属,其中就有82克汞、88克镉,可以说,回收处置废电池不仅处理了污染源,而且也实现了资源的回收再利用。国外发达国家对废电池的回收与利用极为重视。西欧许多国家不仅在商店,而且直接在大街

上都设有专门的废电池回收箱,废电池中95%的物质均可以回收,尤其是重金属回收价值很高。如国外再生铅业发展迅速,现有铅生产量的55%均来自于再生铅。而再生铅业中,废铅蓄电池的再生处理占据了很大比例。100千克废铅蓄电池可以回收50-60千克铅。对于含镉废电池的再生处理,国外已有较为成熟的技术,处理100千克含镉废电池可回收20千克左右的金属镉对于含汞电池则主要采用环境无害化处理手段防止其污染环境。据悉,联合国环境署正在全世界推广“生活周期经济”的新概念。它是将一个商品“从摇篮到坟墓”分为多个阶段,即:原料获得、制造工艺、运输、销售、使用、维修、回收利用、最后处置等,在每个阶段,都必须加强环境管理。生产厂家和消费者都应对自己的行为负责,生产厂家在制定生产计划、开发新产品和回收废弃产品时必须考虑环境保护的要求,消费者在购买、使用和丢弃商品时也不能对环境造成危害。我国目前在废电池的环境管理方面相当薄弱。按照巴塞尔公约中关于危险废物的控制规定,

许多种类的废电池如铅酸电池、含汞电池、镉镍电池等属于危险废物,应该按照危险废物来管理,但是目前在我国,对于任何种类的废电池都没有按照危险废物来管理,而是当作普通垃圾来对待。此外,对于废电池的回收、处理和处置,国家也没有制定具体的政策和法规。1995年颁布的《固体废弃物污染环境防治法》对于废电池的回收处理未作任何规定。

最近有人提出废电池回收程序:

1.放置(BCB)费电池回收桶

2.定期专人上门收集

3.电池分类(普通电池、纽扣电池)

4.市内库房分类储存

5.集中到一定数量后运至郊区放置地点依电池种类装入集装箱内封存,直至国内成熟废电池回收技术出台

三、废电池的利用

废电池说废其实也不“废”,其中含有大量的有色金属,而有色金属是地球上不可再生的宝贵资源。对于废电池的最佳处理办法是再生利用,提取其中的有用成分,将废物变为资源。但由于废电池造成的环境问题在我国一直没有引起高度重视,因此,废电池的再生利用、处理处置技术的研究开发几乎等于零,只有少数几个单位在这方面刚刚起步,国内目前非常缺乏先进成熟的废电池处理技术。除了汽车用的铅酸蓄电池被回收利用了之外,其它种类的废电池都是“一扔了之”。

国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。

1.固化深埋、存放于废矿井

如法国一家工厂就从中提取镍和镉,再将镍用于炼钢,镉则重新用于生产电池。其余的各类

废电池一般都运往专门的有毒、有害垃圾填埋场,但这种做法不仅花费太大而且还造成浪费,

因为其中尚有不少可作原料的有用物质。

2.回收利用

(1)热处理

瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需的锰铁合金。该工厂一年可加工2000吨废电池,可获得780吨锰铁合金,400吨锌合金及3吨汞。另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。不过,热处理的方法花费较高,瑞士还规定向每位电池购买者收取少量废电池加工专用费。

(2)“湿处理”

马格德堡近郊区正在兴建一个“湿处理”装置,在这里除铅蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属,用这种方式获得的原料比热处理方法纯净,因此在市场上售价更高,而且电池中包含的各种物质有95%都能提取出来。湿处理可省去分拣环节(因为分拣是手工操作,会增加成本)。马格德堡这套装置年加工能力可达7500吨,其成本虽然比填埋方法略高,但贵重原料不致丢弃,也不会污染环境。

我们作为高中生,一定要认识到废电池的危害。从自身做起!

三、化学 炼铜

水法炼铜的原理是:CuSO4+Fe=Cu+FeSO4

水法炼铜也称胆铜法,其生产过程主要包括两个方面。一是浸铜,就是把铁放在胆矾(CuSO4·5H2O)溶液(俗称胆水)中,使胆矾中的铜离子被金属置换成单质铜沉积下来;二是收集,即将置换出的铜粉收集起来,再加以熔炼、铸造。各地所用的方法虽有不同,但总结起来主要有三种方法:第一种方法是在胆水产地就近随地形高低挖掘沟槽,用茅席铺底,把生铁击碎,排放在沟槽里,将胆水引入沟槽浸泡,利用铜盐溶液和铁盐溶液颜色差异,浸泡至颜色改变后,再把浸泡过的水放去,茅席取出,沉积在茅席上的铜就可以收集起来,再引入新的胆水。只要铁未被反应完,可周而复始地进行生产。第二种方法是在胆水产地设胆水槽,把铁锻打成薄片排置槽中,用胆水浸没铁片,至铁片表面有一层红色铜粉覆盖,把铁片取出,刮取铁片上的铜粉。第二种方法比第一种方法麻烦是将铁片锻打成薄片。但铁锻打成薄片,同样质量的铁表面积增大,增加铁和胆水的接触机会,能缩短置换时间,提高铜的产率。第三种方法是煎熬法,把胆水引入用铁所做的容器里煎熬。这里盛胆水的工具既是容器又是反应物之一。煎熬一定时间,能在铁容器中得到铜。此法长处在于加热和煎熬过程中,胆水由稀变浓,可加速铁和铜离子的置换反应,但需要燃料和专人操作,工多而利少。所以宋代胆铜生产多采用前两种方法。宋代对胆铜法中浸铜时间的控制,也有比较明确的了解,知道胆水越浓,浸铜时间可越短;胆水稀,浸铜的时间要长一些。可以说在宋代已经发展从浸铜方式、取铜方法、到浸铜时间的控制等一套比较完善的工艺。

火法炼铜主要原料是硫化铜精矿,一般包括焙烧、熔炼、吹炼、精炼等工序.

焙烧分半氧化焙烧和全氧化焙烧(“死焙烧”),分别脱除精矿中部分或全部的硫,同时除去部分砷、锑等易挥发的杂质。此过程为放热反应,通常不需另加燃料。造锍熔炼一般采用半氧化焙烧,以保持形成冰铜时所需硫量;还原熔炼采用全氧化焙烧;此外,硫化铜精矿湿法冶金中的焙烧,是把铜转化为可溶性硫酸盐,称硫酸化焙烧。

熔炼主要是造锍熔炼,其目的是使铜精矿或焙烧矿中的部分铁氧化,并与脉石、熔剂等造渣除去,产出含铜较高的冰铜(xCu2S·yFeS)。冰铜中铜、铁、硫的总量常占80%~90%,炉料中的贵金属,几乎全部进入冰铜。

冰铜含铜量取决于精矿品位和焙烧熔炼过程的脱硫率,世界冰铜品位一般含铜40%~55%。生产高品位冰铜,可更多地利用硫化物反应热,还可缩短下一工序的吹炼时间。熔炼炉渣含铜与冰铜品位有关,弃渣含铜一般在0.4%~0.5%。熔炼过程主要反应为:

2CuFeS2→Cu2S+2FeS+S

Cu2O+FeS→Cu2S+FeO

2FeS+3O2+SiO2→2FeO·SiO2+2SO2

2FeO+SiO2→2FeO·SiO2

造锍熔炼的传统设备为鼓风炉、反射炉、电炉等,新建的现代化大型炼铜厂多采用闪速炉。

鼓风炉熔炼鼓风炉是竖式炉,小国很早就用它直接炼铜。传统的方法为烧结块鼓风炉熔炼。硫化铜精矿先经烧结焙烧脱去部分硫,制成烧结块,与熔剂、焦炭等按批料呈层状加入炉内,熔炼产出冰铜和弃渣,此法烟气含SO2低,不易经济地回收硫。为消除烟害,回收精矿中的硫,20世纪50年代,发展了精矿鼓风炉熔炼法,即将硫化铜精矿混捏成膏状,再配以部分块料、熔剂、焦炭等分批从炉顶中心加料口加入炉内,形成料封,减少漏气,提高SO2浓度。混捏料在炉内经热烟气干燥、焙烧形成烧结料柱,块状物料也呈柱状环绕在烧结料柱的周围,以保持透气性,使熔炼作业正常进行。中国沈阳冶炼厂、富春江冶炼厂等采用此法。

反射炉熔炼适于处理浮选的粉状精矿。反射炉熔炼过程脱硫率低,仅20%~30%,适于处理含铜品位较高的精矿。如原料含铜低、含硫高,熔炼前要先进行焙烧。反射炉生产规模可大型化,对原料,燃料的适应性强,长期来一直是炼铜的主要设备,至80年代初,全世界保有的反射炉能力仍居炼铜设备的首位。但反射炉烟气量大,且含SO2仅1%左右,回收困难。反射炉的热效率仅25%~30%,熔炼过程的反应热利用较少,所需热量主要靠外加燃料供给。70年代以来,世界各国都在研究改进反射炉熔炼,有的采用氧气喷撒装置将精矿喷入炉内,加强密封,以提高SO2浓度。中国白银公司第一冶炼厂将铜精矿加到反射炉中的熔体内,鼓风熔炼,提高了熔炼强度,烟气可用于制取硫酸。

反射炉为长方形,用优质耐火材料砌筑。燃烧器设在炉头部,烟气从炉尾排出,炉料由炉顶或侧墙上部加入,冰铜从侧墙底部的冰铜口放出,炉渣从侧墙或端墙下的放渣口排出。炉头温度1500℃~1550℃,炉尾温度1250℃~1300℃,出炉烟气1200℃左右。熔炼焙烧矿时,燃料率10%~15%,床能率3~6t/(m2·日)。铜精矿直接入炉,燃料率16%~25%,床能率为2~4t/(m2·日),称生精矿熔炼。中国大冶冶炼厂采用270m2反射炉熔炼生精矿。

电炉熔炼炼铜采用电阻电弧炉即矿热电炉,对物料的适应性非常广泛,一般多用于电价低廉的地区和处理含难熔脉石较多的精矿。电炉熔炼的烟气量较少,若控制适当,烟气中SO2浓度可达5%左右,有利于硫的回收。

铜熔炼电炉多为长方形,少数为圆形。大型电炉一般长30 m~35m,宽8 m~10m,高4 m~5m,采用六根直径为1.2 m~1.8m的自焙电极,由三台单相变压器供电。电炉视在功率3000~50000千伏安,单位炉床面积功率100kw/m2左右,床能率3~6t/(m2·日),炉料电耗400~500kw·h/t,电极糊消耗约2~3kg/t。中国云南冶炼厂采用30000kVA电炉熔炼含镁高的铜精矿。

闪速熔炼是将硫化铜精矿和熔剂的混合料干燥至含水0.3%以下,与热风(或氧气、或富氧空气)混合,喷入炉内迅速氧化和熔化,生成冰铜和炉渣。其优点是熔炼强度高,可较充分地利用硫化物氧化反应热。降低熔炼过程的能耗。烟气中SO2浓度可超过8%。闪速熔炼可在较大范围内调节冰铜品位,一般控制在50%左右,这样对下一步吹炼有利。但炉渣含铜较高,须进一步处理。

闪速炉有奥托昆普型和国际镍公司型两种。70年代末世界上已有几十个工厂采用奥托昆普型闪速炉,中国贵溪冶炼厂也采用此种炉型。

冰铜吹炼利用硫化亚铁比硫化亚铜易于氧化的特点,在卧式转炉中,往熔融的冰铜中鼓入空气,使硫化亚铁氧化成氧化亚铁,并与加入的石英熔剂造渣除去,同时部分脱除其他杂质,而后继续鼓风,使硫化亚铜中的硫氧化进入烟气,得到含铜98%~99%的粗铜,贵金属也进入粗铜中。

一个吹炼周期分为两个阶段:第一阶段,将FeS氧化成FeO,造渣除去,得到白冰铜(Cu2S)。冶炼温度1150℃~1250℃。主要反应是:

2FeS+3O2→2FeO+2SO2

2FeO+SiO2→2FeO·SiO2

第二阶段,冶炼温度1200℃~1280℃将白冰铜按以下反应吹炼成粗铜:

2Cu2S+3O2→2Cu2O+2SO2

Cu2S+2Cu2O→6Cu+SO2

冰铜吹炼是放热反应,可自热进行,通常还须加入部分冷料吸收其过剩热量。吹炼后的炉渣含铜较高,一般为2%~5%,返回熔炼炉或以选矿、电炉贫化等方法处理。吹炼烟气含SO2浓度较高,一般为8%~12%,可以制酸。吹炼一般用卧式转炉,间断操作。表压约1kgf/cm2的空气通过沿转炉长度方向安设的一排风眼鼓入熔体,加料、排渣、出铜和排烟都经过炉体上的炉口。

粗铜精炼分火法精炼和电解精炼。火法精炼是利用某些杂质对氧的亲和力大于铜,而其氧化物又不溶于铜液等性质,通过氧化造渣或挥发除去。其过程是将液态铜加入精炼炉升温或固态铜料加入炉内熔化,然后向铜液中鼓风氧化,使杂质挥发、造渣;扒出炉渣后,用插入青木或向铜液注入重油、石油气或氨等方法还原其中的氧化铜。还原过程中用木炭或焦炭覆盖铜液表面,以防再氧化。精炼后可铸成电解精炼所用的铜阳极或铜锭。精炼炉渣含铜较高,可返回转炉处理。精炼作业在反射炉或回转精炼炉内进行。

火法精炼的产品叫火精铜,一般含铜99.5%以上。火精铜中常含有金、银等贵金属和少量杂质,通常要进行电解精炼。若金、银和有害杂质含量很少,可直接铸成商品铜锭。

电解精炼是以火法精炼的铜为阳极,以电解铜片为阴极,在含硫酸铜的酸性溶液中进行。电解产出含铜99.95%以上的电铜,而金、银、硒、碲等富集在阳极泥中。电解液一般含铜40~50g/L,温度58℃~62℃,槽电压0.2~0.3V,电流密度200~300A/m2,电流效率95%~97%,残极率约为15%~20%,每吨电铜耗直流电220~300kwh。中国上海冶炼厂铜电解车间电流密度为330A/m2。

电解过程中,大部分铁、镍、锌和一部分砷、锑等进入溶液,使电解液中的杂质逐渐积累,铜含量也不断增高,硫酸浓度则逐渐降低。因此,必须定期引出部分溶液进行净化,并补充一定量的硫酸。净液过程为:直接浓缩、结晶,析出硫酸铜;结晶母液用电解法脱铜,析出黑铜,同时除去砷、锑;电解脱铜后的溶液经蒸发浓缩或冷却结晶产出粗硫酸镍;母液作为部分补充硫酸,返回电解液中。此外,还可向引出的电解液中加铜,鼓风氧化,使铜溶解以生产更多的硫酸铜。电解脱铜时应注意防止剧毒的砷化氢析出。

火法炼铜的其他方法已应用于工业生产的方法还有:

三菱法将硫化铜精矿和熔剂喷入熔炼炉的熔体内,熔炼成冰铜和炉渣,而后流至贫化炉产出弃渣,冰铜再流至吹炼炉产出粗铜。此法于1974年投入生产。

诺兰达法制粒的精矿和熔剂加到一座圆筒型回转炉内,熔炼成高品位冰铜。所产炉渣含铜较高,须经浮选选出铜精矿返回炉内处理。此法于1973年投入生产。

氧气顶吹旋转转炉法用以处理高品位铜精矿。将铜精矿制成粒或压成块加入炉内,由顶部喷枪吹氧,燃料也由顶部喷入,产出粗铜和炉渣。中国用此法处理高冰镍浮选所得铜精矿。

离析法用于处理难选的结合性氧化铜矿。将含铜1%~5%的矿石磨细,加热至750℃~800℃后,混以2%~5%的煤粉和0.2%~0.5%的食盐,矿石中的铜生成气(Cu3Cl3)并为氢还原成金属铜而附着于炭粒表面,经浮选得到含铜50%左右的铜精矿,然后熔炼成粗铜。此法能耗高,很少采用。

参考资料:镍钴分离