首页 高压浸出 搅拌浸出 数字孪生 湿法冶金 溶剂萃取
溶剂萃取 2024-09-30 18:34:06

铁钴镍熔点比较(分离钴镍)

一、铁钴钴镍萃取的镍熔镍萃取基本操作流程

一、调节合适的点比萃取pH,酸性萃取剂对溶液pH比较敏感,较分所以保持合适的离钴溶液pH既保证萃取,又可保证金属的铁钴分离,用P204、镍熔镍P507一般要求pH在3.5-4.0。点比

二、较分控制合适的离钴相比,搅拌速度、铁钴混合时间。镍熔镍在发生萃取时,点比一般萃取级数会确定,较分如果相比不合适,离钴会降低钴镍的收率。萃取其实就是一个混合澄清的过程,如果搅拌速率不合适,就会导致混相,在澄清段分相不好,就会污染料液,混合时间不合适会导致萃取效率低下。

三、反萃酸度以及反萃相比。反萃就是一个分离与富集的过程,考虑到下一步的处理需要一定浓度的料液,所以反萃酸度就控制着料液的浓度。比如用1.5moL/L的酸反萃,会得到约45g/L的钴镍料液。用3.5moL/L的酸反萃,会得到约100g/L的钴镍料液。

四、对萃取过程的监控。一般每2小时,需要把各级数的料液的杂质分析检测,以判断萃取分离的好坏。

五、油份的除去。

主要有三种措施:

(1)静置分离,用一个比较高的储桶,上部进料,下部出料,油份由于密度小会悬浮在料液上部。

(2)活性炭除油,就是在一个活性炭的储桶里,让料液从其中经过。

(3)超声波除油,通过超声波的能量,破除乳化,加速油与水的分离。

二、分离和富集

钍和其他伴生元素的分离可用沉淀、萃取、离子交换和萃取色层等方法。

钍的沉淀分离方法很多。苛性碱、氢氧化铵、吡啶、六次甲基四胺都能使钍生成白色氢氧化物沉淀。小量钍可以用铝、铁为聚集剂,沉淀在pH3.5即开始形成,不溶于过量试剂。与钍形成配合物的有机酸如酒石酸等不应存在。此法可将钍与碱金属、碱土金属、锌、镍、铜、银等元素分离,用吡啶或六次甲基四胺还可将钍与稀土分离。在0.5~1.3mol/L硝酸或盐酸介质中,草酸浓度为10~50g/L时,钍成草酸盐沉淀而与铁、铝、锆、钛等元素分离,铀(Ⅵ)、稀土、钙同时沉淀。少量钍可用稀土和钙做聚集剂。草酸钍不溶于水和稀酸,但溶于过量的草酸铵溶液中。在pH≥1.5时,过氧化氢能沉淀钍为过氧化钍而与碱金属、钛、铀、锡、铍、稀土等元素分离,铈部分共沉淀。在6mol/L硝酸溶液中可用碘酸盐沉淀大量钍,在0.5~1mol/L硝酸溶液中,以亚汞为聚集剂,可用碘酸盐沉淀微量钍,铀(Ⅳ)、铈(Ⅲ)及稀土元素等不沉淀,钛、锆、铁、铌、钽、铀(Ⅳ)和铈(Ⅳ)同时被沉淀。碘酸钍不溶于过量试剂及强酸中,能溶于还原性酸中(如盐酸)。在稀盐酸溶液中,氢氟酸能将钍沉淀,成难溶的氟化钍,稀土元素同时被沉淀,与铌、钽、锆、钛、钨等元素分离。大量氟化铵存在时能使钪分离,氟化钍能溶于硼酸和硝酸中。在pH2~2.8的盐酸或硝酸介质中,有机试剂如苯甲酸、间-硝基苯甲酸等都能沉淀钍,与铍、锰、锌、镍、钴、铀、碱土金属等元素分离,严格控制溶液的酸度可与稀土元素定量分离。

萃取分离方法,适用于微量钍的分离。在饱和硝酸铝的1.5mol/L硝酸溶液中,用异丙叉丙酮[即异丙烯基丙酮(CH3)2C=CHCOCH3]萃取钍,除铀,钒及少量锆以外,几乎能与所有伴生元素分离。在pH>1的硝酸溶液中用等体积的0.25mol/LTTA(噻吩甲酰三氟丙酮)的苯溶液萃取钍,钋(Po)同时被萃取。另外在适当的介质中,磷酸三丁酯亦能萃取钍,与铀、镭等分离。在钍的3mol/LHCl溶液中用5g/L苯甲酰苯胲-三氯甲烷萃取钛使与钍分离。

萃取色层分离方法,同样也适用于微量钍的分离和富集。目前胺类萃取剂,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(国产胺型萃取剂);中性配位剂,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋树脂(苯乙烯-二乙烯苯为骨架,含有60%TBP共聚物)、5208萃淋树脂(异烷基磷酸二丁酯);酸性配位剂,P507(2-乙基己基磷酸单2-乙基己酯)等结合载体聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附树脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附树脂(聚二乙烯苯)、交联聚甲基丙烯酸型树脂和泡沫塑料等组成固定相,均能达到在一定浓度的硝酸溶液中富集钍分离钛、锆、铀、稀土等干扰离子。在分析实践中应用较好的是N263、P350、CL-TBP萃淋树脂和5208萃淋树脂等。N203和X-5型聚二乙烯苯或DA201树脂组成固定相,用2mol/LHNO3(1~7mol/L)上柱液通过色层柱,从而使钍与大量铀、锆、磷、铁和稀土等分离,最后用4~5mol/LHCl淋洗钍。P350与X-5型聚二乙烯苯组成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介质上柱可使钍与大量铁、铝、钙、镁、钼、铜,钛、稀土等元素分离,最后以5mol/LHCl解脱钍。CL-TBP萃淋树脂是在4mol/LHNO3(3~8mol/L)中富集钍与稀土、铌、钽等杂质分离,最后用3~5mol/LHCl解脱钍。5208萃淋树脂是在0.1~6mol/LHNO3中富集钍与大量铀、钛、锆、锌、钼(Ⅵ)、砷(Ⅴ)、稀土元素等分离,最后用0.1~6mol/LHCl淋洗解脱钍。

离子交换分离方法,也适用于微量钍的分离。在2~7mol/LHCl介质中,钛、锆、铀、稀土等在743大孔阳离子交换树脂上的分配系数与钍差别较大。因此,适用于钍与许多元素的分离,特别适用于钍与高量钛、锆和稀土元素的分离。根据试样中钛,锆和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去这些元素,用氯化铵溶液淋洗,使氢型阳离子交换树脂转变为铵型,最后以草酸铵溶液淋洗钍,用光度法测定钍。也有在8mol/LHNO3介质中,用742大孔阴离子交换树脂富集钍,分离铀和稀土等干扰,最后以水解脱钍,光度法完成测定。

三、钴镍萃取的铜钴镍分离工艺实例

处理硫化铜镍矿,一般采用选矿、熔炼和吹炼获得高冰镍,然后再用浮选法使铜镍分离,铜、镍精矿再分别送冶炼产出金属铜和金属镍,在冶炼过程中综合回收钴和铂族元素,某铜镍硫化矿的原则工艺流程如下:详见流程图:

品位较高的铜镍矿可以直接送去冶炼获得高冰镍,只有贫的铜镍矿才进行选矿。浮选获得的铜镍混合精矿经过冶炼得出的高冰镍,其分离方法有熔炼法、水冶法和浮选法,而浮选法是较经济且有效的方法之一,我国某铜镍矿系采用浮选法分离高冰镍。该厂的高冰镍的物相组成是硫化镍(Ni3S2)、硫化铜〔(Cu2S2)2FeS+Cu2S〕、合金(Cu—Ni—Fe)、金属铜(Cu)以及少量的磁铁矿(Fe3O4)和残渣。其中硫化镍和硫化铜的含量占90%以上。因此,铜镍分离的关键是硫化镍和硫化铜的分离。高冰镍经磨碎后,铜镍硫化物的粒子互相解离,在强碱性溶液中(PH12~12.5),加入丁黄药进行浮选。此时硫化镍被抑制,硫化铜上浮,达到分离的目的。这一新工艺成功的被应用,使我国铜镍分离技术达到了国际先进水平。

四、金属钨钴镍铬怎么分离

1、全部混合时,先加过量较浓的NaOH,二价锰离子形成难溶的氢氧化物沉淀(Mn(OH)2部分被O2氧化为MnOOH),三价铬离子形成盐(这些离子对应的氢氧化物有明显两性).

2、提取锰的氢氧化物用酸溶解,加入过二硫酸盐或铋酸钠氧化,Mn形成高锰酸根,溶液中再加Na2SO3把高锰酸根还原为MnO2沉淀(可用浓盐酸或浓硫酸溶解,再提纯).

3、溶液蒸干后再溶于浓盐酸(要用很大过量的酸),再加NaOH至碱性,加过量H2O2,铬离子被氧化为铬酸根,加BaCl2沉淀,形成BaCrO4,在溶于酸,加草酸还原得铬离子,加氨水沉淀为Cr(OH)3(可用酸溶解,再提纯).

五、钴、镍分离因素是什么意思

意思是导致钴、镍分离的原因。

钴、镍分离主要有化学沉淀法和溶剂萃取法,其他还有树脂法、浮选法、双水相法、聚合物2盐2水液2固萃取(非有机溶剂液固萃取)法、氧化还原法和电反萃取法。

对镍低钴高的溶液可用硫化沉淀除去镍,对镍高钴低的溶液可用氧化水解沉淀除去钴,沉淀法不太适合钴、镍浓度大致相当的溶液。

参考资料:冶炼自动化